
Binary Access Memory: An Optimized Lookup

Table for Successive Approximation Applications

Benjamin Hershberg∗, Skyler Weaver∗, Seiji Takeuchi†, Koichi Hamashita†, Un-Ku Moon∗

∗School of Electrical Engineering and Computer Science, Oregon State University
†Asahi Kasei EMD Corporation, Atsugi, Japan

Abstract—An optimized memory structure, Binary Access
Memory (BAM), is presented for successive approximation ap-
plications that employ an error correction lookup table. Unlike
true random-access memory, the probability of different codes
occurring in a binary successive approximation access pattern
is not uniformly distributed. BAM exploits this fact in several
ways to reduce the number of sub-block switches, the average
and worst-case access latency, and power consumption compared
to a conventional SRAM lookup table. A simple technique for
using BAM in an asynchronous successive approximation design
is also presented.

I. INTRODUCTION

The binary search algorithm is a widely applicable search

technique that has been used since ancient times to determine

the value of an unknown quantity. In the realm of modern ana-

log and mixed-signal integrated circuit design, a very popular

application of this algorithm is the successive approximation

register analog-to-digital converter (SAR ADC). The basic

structure of a voltage-domain SAR ADC is shown in Fig. 1(a).

The ADC determines the digital representation of the unknown

input voltage Vin by successively decreasing the error between

the input voltage and the DAC voltage in binary steps over

several cycles [1]. Each cycle, the SAR code is updated with

a new, more accurate approximation of Vin. While several

of the key ideas presented in this paper are applicable to

binary search applications in a more general sense, they will

be presented from within the context of SAR ADCs in this

discussion.

In a practical SAR ADC implementation, mismatch of the

DAC elements cause INL and DNL errors. Even with careful

layout and high precision analog process technologies, the

upper bound on DAC element matching will be limited by

overall power, area, and input loading requirements. To push

beyond this matching limit, calibration is often employed. A

very popular method is to determine the precise bit weights

of a binary controlled DAC using sub-radix-2 DAC elements,

such as in [2]. This approach allows small DAC elements sized

only for noise requirements, but does require additional digital

processing in order to apply the bit-weight corrections to the

final SAR code.

Bit-weight calibration works under the assumption that the

DAC element values are static. For example, a MOS capacitor

would be unsuitable as a capacitive DAC element because its

capacitance value is a non-linear function of the voltage across

its two terminals. In some processes, particularly exotic and

emerging semiconductor technologies, highly linear capacitors

Vin

DAC

SAR

m

(a)

Vin

DAC

SAR

Lookup

Table

(BAM)

n

m

(b)

Fig. 1. a) The fundamental structure of a voltage-domain SAR ADC. b)
A SAR ADC which uses a lookup table to correct for non-idealities. Unlike
most SAR calibration techniques, it can correct highly non-linear and signal
dependent errors.

are simply not available. Furthermore, from a topological

viewpoint the ability to perform non-linear calibration would

enable new design approaches and successive approximation

techniques which have never been seriously considered until

now.

For a fully generalized form of error correction, we can use

a one-to-one lookup table to translate between each possible

SAR code and a corresponding DAC code which will generate

the correct analog reference. This is shown in Fig. 1(b). The

DAC must still be able to accurately generate every analog

reference described by the SAR, but the codes which generate

these references no longer need to be linear or co-dependent

in any way. The SAR code is the address provided to the

lookup table, and the output code used to control the DAC

can be a different length than the SAR code. This allows the

DAC to be designed with many extra levels of redundancy in

order to ensure that there will be at least one suitable DAC

code for every SAR code even in the presence of mismatch,

non-linearity, and signal dependence.

This generalized approach to SAR-ADC error correction

is often avoided because the associated latency, power, cali-

bration, and complexity penalties of implementing the lookup

978-1-4244-9474-3/11/$26.00 ©2011 IEEE 1620

node

node

branch

br
an

ch

SA begin
node

Mid-level

(code 1000000)

Step 1

Step 2

Step 3

Step 4
Step 5

Step 6
Step 7

Fig. 2. A binary tree describing all possible paths for a 7 step binary search.
BAM sub-blocks are organized in a tree structure, and sub-blocks store sub-
trees.

table as a RAM or ROM are often too high. The very name

RAM (random access memory) provides a key insight into

how we can optimize the lookup table for binary-search appli-

cations - a binary-search is not an entirely random operation.

The address decode and data read-out hardware of a RAM

is specifically structured with the assumption that all memory

locations have an equal probability of being accessed on any

given cycle. Quite to the contrary, during any cycle within the

binary search there are only two possible memory locations

out of the entire range of addresses which might be accessed

on the following cycle. In this paper we present the concept of

binary access memory (BAM), which can be used to reduce

the latency and power requirements of the lookup table.

II. USEFUL PROPERTIES OF BINARY SEARCH

As visualized in the decision tree of Fig. 2 for a 7-bit

SAR ADC, the structure of possible memory accesses patterns

during a successive approximation (SA) conversion is a binary

tree, with each node branching into exactly two children nodes

(each horizontal “node” line in Fig. 2 corresponds to a memory

address in the lookup table). A SA conversion consists of many

steps, with step 1 beginning at the left most node and moving

one branch to the right on each successive step until reaching

the right-most nodes, where the final conversion result is

obtained. There are some key properties of this tree structure

that we can exploit in order to optimize the memory access:

1) Once a search goes down a specific branch, the proba-

bility that any nodes which are not descendants of this

branch being accessed later on in the search becomes

exactly zero.

2) The probability of any specific node being visited during

a SA conversion is a non-uniform distribution. The

further to the left of Fig. 2 the decision level is, the

higher the probability is that it will be visited during

6 words 6 words 6 words 6 words6 words

7 words

Data Out

G
B
L

LEVEL 1 LEVEL 2 LEVEL 3

addr[6:0]

else... else...

addr[3:0]

addr[1:0]

a
d

d
r[3

:0
]

a
d

d
r[6

:4
]

Level 1 Select:

if (addr[3:0]==”0000")

Level 2 Select:

if (addr[1:0]==”00")

Level 3 Select:

else...

6 words 6 words 6 words 6 words6 words

6 words 6 words 6 words 6 words6 words

6 words 6 words 6 words 6 words6 words

Fig. 3. Basic structure of a three level, 127 word BAM. SA steps 1-3 access
Level 1, steps 4-5 access Level 2, and steps 6-7 access Level 3. The tree-like
structure of BAM places the most frequently accessed sub-blocks closest to
the inputs and outputs, with the fewest intermediate buffers.

an SA conversion. At the left most node (the mid-level

code), the probability of being visited equals 1.

3) For any node on the tree currently being visited, its two

children nodes each have a probability of 0.5 of being

visited on the next step, and all other nodes in the tree

have zero probability of being visited on the next step.

4) There is only one step number which a node can be

visited during, and this step number is known for all

nodes. For example, the left-most node in Fig. 2 will

always be visited on step 1, its two children can only

be visited on step 2, their children can only be visited

on step 3, and so on.

In the following sections, we will explore the practical

application of these four properties in the BAM structure.

III. BINARY ACCESS MEMORY

In a typical SRAM, the data words are subdivided into many

sub-blocks, as in [3]. In a three-level decode scheme, the cor-

rect sub-block is selected by decoding the MSBs of the address

into column select and row select signals. The remaining LSBs

are passed on to the sub-block itself, which then decodes and

reads the requested data word. Properties 1 and 2 of Section II

indicate that this is not the optimal structuring for a BAM.

Property 1 suggests that we can minimize the number of sub-

block decodes and block-switches which must be performed

during a SA-conversion by storing sub-trees in the sub-blocks

rather than storing words according to common MSB codes (as

in the typical SRAM case). Furthermore, Property 2 suggests

that we should make the data words closest to the trunk of the

tree “easier” to access than words with a lower probability of

being read out. A three-level, 127-word BAM structure for a

7-bit SAR ADC which implements these two considerations is

presented in Fig. 3. The Level 1 sub-block contains all of the

words with addr[3:0] equal to ‘0000’, which in Fig. 2

is all of the nodes in steps 1-3. The four Level 2 sub-blocks

contain all of the words where addr[3:2] is not ‘00’ but

1621

1

0

0 1

Level 1 Level 2

1

0

1

Level 3

Step

1 1 0 0 0 0 0 0 Level 1

2 1 1 0 0 0 0 0

3 1 0 1 0 0 0 0

4 1 0 0 1 0 0 0 Level 2

5 1 0 0 1 1 0 0

6 1 0 0 1 1 1 0 Level 3

7 1 0 0 1 1 0 1

Memory Address

Level 1 Level 2 Level 3

1000000

1100000 1001110

1001101

1001000

1001100

1001010

1001011

1001001

1001111

1011100

1000100

1010000

1011000

1010100

1110000

0100000

0110000

0010000

Fig. 4. An example SA conversion without pre-fetch. Unlike the many block
switches that would be necessary for an SRAM, a BAM only requires as many
block switches as it has levels (3 in this case).

addr[1:0] is ‘00’; these are the four 6-node sub-trees that

form steps 4 and 5 in Fig. 2. The sub-sub-trees in steps 6 and

7 of Fig. 2 make up the sub-blocks of Level 3. For simplicity,

this configuration is presented; however, in practice, a three

level BAM would be better suited for a memory depth of

1024 words or more.

A hypothetical BAM memory access pattern is presented

in Fig. 4. As highlighted in the table at the upper left of

the figure, the address’ LSBs are always a ‘1’ followed by

step − 7 zeroes. This makes the address decode hardware

very straightforward - not only does the number of zeroes

tell us which level we are currently on, but the position of the

least-significant ‘1’ in the address tells us which step we are

currently on. Once this information is used to select the proper

sub-block, decoding within any sub-block is simply a matter

of providing it with the correct subset of address bits (the

subset used depends on which level the sub-block resides).

The number of sub-block switches during a SA conversion

for a three-level BAM is always three. By contrast, the average

number of sub-block switches for an analogous three-level

SRAM is n− (m+ 0.5) where n is the total address length

and m is the sub-block address length. In a practical design,

this will result in speed and power benefits. For example, for a

12-bit SAR ADC, the BAM will switch sub-blocks 3 times per

SA conversion whereas an SRAM would switch an average of

7.5 times per conversion.

Further speed and power savings are obtained with the

BAM structure by positioning the most commonly accessed

words nearest to the address inputs and data outputs. For

example, the Level 1 sub-block will always be accessed during

a SA-conversion, and this block is connected to address-in

and data-out by the fewest number of buffers and routing.

The power-per-bit-accessed will be lowest for this sub-block,

second lowest for the Level 2 sub-blocks, and the most for

the Level 3 blocks. This “easy” access to the most commonly

Vin

DAC

SAR

Lookup

Table

(BAM)

n

m-1

2n

n

n

Fig. 5. System level view of BAM with pre-fetch. The two possible words
which could be requested on the following cycle are retrieved in advance, and
the correct one is chosen by the comparator.

double word

double word

double word

Decode 2-to-4

ADDR[1:0]

(11)

L
B

L

L
B

L

L
B

L

L
B

L

L
B

L

L
B

L

L
B

L

L
B

L

(10)

(01)

(00)
word(empty)

enable

(a)

double word

double word

double word
Decode 2-to-3

ADDR[1:0]

(11)

L
B

L

L
B

L

L
B

L

L
B

L

L
B

L

L
B

L

L
B

L

L
B

L

(00 or 10)

(01)

enable

(b)

Fig. 6. Sub-block structures for BAM with pre-fetch and pre-charge for a)
the Level 1 sub-block and b) all Level 2 and Level 3 sub-blocks.

accessed words also results in a lower average access time,

which can improve the overall speed of an asynchronous BAM

(discussed further in Section VI).

IV. GLOBAL PRE-FETCHING

Property 3 of Section II hints at a way to dramatically reduce

the effective latency of memory accesses. In a SA conversion,

the children of the current reference level are the only two

possible levels which might be visited on the next step (step

n). If we begin pre-fetching these two words on step n− 1, we

can simply select the correct word to use as soon as both the

comparator has determined the branch to follow for step n−1
and the two possible choices for step n have been fetched.

Pre-fetching reduces the memory access time (tBAM) by the

step period (Tstep). If Tstep is greater than tBAM , the total

effective latency is only the short time required to select the

correct pre-fetched word and provide it to the DAC.

Fig. 5 is the system level implementation of pre-fetching.

Although the global sub-block organization in Fig. 3 is

unaffected by the addition of pre-fetching, the sub-blocks

themselves must be modified. The most efficient way to pre-

fetch is to pair sibling words together as a double length word

and store them at the address of their parent (so that the SAR

code during step n− 1 will automatically pre-fetch the double-

word for step n). The pre-fetch enabled sub-block for Level 1

1622

1

0

0 1

Level 1 Level 2

1

0

1

Level 3

(empty)

0
0
0
0
0
0

1
0
0
0
0
0

1
1
0
0
0
0

0
1
0
0
0
0

1
0
1
0
0
0

Step

(7) 0 0 0 0 0 0 Level 1

1 1 0 0 0 0 0

2 1 1 0 0 0 0

3 1 0 1 0 0 0 Level 2

4 1 0 0 1 0 0

5 1 0 0 1 1 0 Level 3

6 1 0 0 1 1 1

7 0 0 0 0 0 0

Memory Address

Level 1 Level 2 Level 3

1
0
1
1
0
0

1
0
0
1
0
0 1

0
0
1
1
0

1
0
0
1
1
1

1
0
0
1
0
1

Fig. 7. Example SA conversion with pre-fetch. Data is now stored as double-
words, which reduces the number of address bits by one. The first double-word
accessed in a sub-block immediately after a level transition is always the same,
which allows all sub-blocks to be pre-charged with their initial double-words.

is shown in Fig. 6(b) and for Levels 2 and 3 in Fig. 6(a).

A sample SA-conversion with pre-fetch is shown in Fig. 7

for the same access pattern of Fig. 4. As noted in the SAR

code table of Fig. 7, the overall address length of the BAM

has been reduced by one bit and is only addressed by the

six MSBs of the SAR. This is because the double-words are

stored in their parent’s addresses. The “missing” 7th bit is

now fed directly from the comparator output to the double-

word selection MUX in Fig. 5. The amount of data stored

remains the same, because the word length has doubled while

the address range has halved. Since half of all bits that are pre-

fetched are discarded, from a power-delay product perspective

pre-fetching may not have much benefit. However, from a total

conversion speed standpoint, it is very helpful in minimizing

the speed bottleneck that the BAM would otherwise present

to the overall SAR ADC operation.

V. LOCAL PRE-CHARGING

A subtle but useful change that pre-fetching brings to the

BAM structure is that the ‘10’ double-word in each Level 2

and 3 sub-block and the ‘00’ double-word in the Level 1

sub-block is always the first double-word to be requested

when that respective sub-block is initially selected (as seen

in Fig. 7). This is a helpful trait of pre-fetching because

the worst-case access time occurs on steps with sub-block

transitions, as shown in Fig. 8(a). If the output is buffered

directly (instead of with sense amps), this worst-case access

time becomes even worse because there will be speed-reducing

glitches on the output buffers due to the held value on the

local bit lines of previously requested data sent from that sub-

block. By pre-charging the local bit lines within the sub-block

to the first double-word to be accessed (which will now be the

same word every time), the latency of block-switching steps

can be reduced to that of Fig. 8(b). The worst-case timing

Buffer data to

system output

Block

Switch

Acquire Data at

local block output

Inner block

decode

(a)

Buffer data to

system output

Block

Switch

(b)

Buffer data to

system output

Acquire Data at

local block output

Inner block

decode

(c)

Fig. 8. a) Without pre-charging, the worst-case timing scenario will occur
during steps with block switches and will also include output buffer glitching
(for directly buffered designs). b) With pre-charging, the timing for steps with
block switches is greatly improved and glitches are eliminated. c) The timing
scenario for steps which do not have a block switch.

scenario now happens during steps where there is no block

transition (Fig. 8(c)). The decoders of Fig. 6 are designed

so that whenever the sub-block is not enabled, the local bit

lines are pre-charged with the first double-word that will be

requested the next time the sub-block is accessed.

VI. ASYNCHRONOUS BAM

A fully asynchronous BAM can be built by considering

Property 4 of Section II. If we add an additional bit to each

double-word, and this bit is set to a ‘1’ for every double-

word which would be accessed on an odd numbered step and

a ‘0’ for every double-word on an even numbered step, then

we can use this toggling bit as a clock signal to asynchronously

detect when the data is ready at the output of the BAM. A

fully asynchronous BAM (when used with an asynchronous

SAR) can yield significant speed improvements, because the

access latency for different SA steps varies considerably due

to the structural variations discussed throughout this paper.

VII. CONCLUSION

The concept of binary access memory has been presented

for use as an optimized lookup table for applications with

binary-search memory access patterns. It exploits the unique

properties of binary search to increase access speeds with

tree-based memory structuring, pre-fetching and pre-charging.

Power is decreased by placing the most frequently accessed

words closest to the inputs and outputs and by minimizing the

number of block switches. A simple solution for enabling fully

asynchronous operation offers additional speed improvements.

REFERENCES

[1] D. A. Johns and K. Martin, Analog Integrated Circuit Design. John
Wiley And Sons, 1997.

[2] W. Liu, P. Huang, and Y. Chiu, “A 12b 22.5/45MS/s 3.0mW 0.059mm2
CMOS SAR ADC achieving over 90dB SFDR,” Solid-State Circuits

Conference Digest of Technical Papers (ISSCC), 2010 IEEE International,
pp. 380 –381, feb. 2010.

[3] S. Cosemans, W. Dehaene, and F. Catthoor, “A 3.6 pJ/Access 480 MHz,
128 kb On-Chip SRAM With 850 MHz Boost Mode in 90 nm CMOS
With Tunable Sense Amplifiers,” Solid-State Circuits, IEEE Journal of,
vol. 44, no. 7, pp. 2065 –2077, jul. 2009.

1623

