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Abstract 
An ADC is synthesized entirely from Verilog code in 90nm 

digital CMOS using a standard digital cell library. An analog 
comparator is generated by cross-coupling two 3-input NAND 
gates. The random comparator offsets are used as the ADC 
references and are Gaussian. An implicitly aligned 
three-section piecewise-linear inverse Gaussian CDF function 
on chip linearizes the output. SNDR of 35.9dB is achieved at 
210MSPS.  

Introduction 
An ADC is inherently a mixed signal system that contains 

both analog and digital components. Classically, it is the 
digital part that is synthesizable and can be generated from 
Verilog code, whereas the analog portion is designed on the 
transistor level with a fully customized layout. The comparator 
can be thought of as the block that defines the boundary 
between the analog and the digital circuitry. By moving the 
comparator as close to the input as possible, an ADC becomes 
as digital as possible. This essentially describes the flash ADC. 
Without pre-amplification, the only remaining analog 
components in a flash ADC are the comparators and their 
analog references. To make a comparator that is compatible 
with digital synthesis, it must be similar in size to that of 
standard digital cells. An implication of this is that the 
input-referred offset due to device mismatch will be significant. 
Using the inherent comparator offsets as the comparator 
references eliminates the need for analog references to be 
provided at all [1-3]. If the last remaining analog block, the 
comparator, can also be made out of standard digital cells, the 
entire design can be synthesized from Verilog code (Fig. 1). 

Implementation Details 
An analog equivalent comparator can be constructed from 

two standard CMOS NAND3 digital gates, as seen in Fig. 2. 
Cross-coupling the two NAND3 outputs and A inputs creates a 
positive-feedback latch similar to the back-to-back inverter 
latch of conventional clocked comparators. The clock is fed to 
the C inputs, which resets both outputs to high when the clock 
is low. When the clock goes high, the output capacitance is 
discharged through the three series NMOS devices. 
Connecting the B inputs to a differential analog input causes 
the discharging rate to be influenced by the input. Once one of 
the outputs drops below a PMOS threshold, the 
positive-feedback latch captures the outputs. The voltage of 
the inputs should be high enough that the PMOS devices 
(grayed out) that are connected to the input are effectively off. 
Otherwise, the comparators may stay reset and never evaluate. 

Using a comparator made up of standard digital cells, the 
entire ADC is implemented from Verilog code. A flash ADC 
that uses random comparator offsets as the comparator voltage 
references, without calibration, requires 4b comparators for b 
effective bits [4]. In this design, 2047 comparators are 

implemented for a target of 5.5bits (35dB SNDR). The 
comparator outputs are encoded into a binary value through a 
Wallace adder, which is pipelined to reduce the logic delay. 
The raw binary output of the ADC from a ramp input signal 
will be the cumulative distribution function (CDF) of the 
comparator offset. Since the CDF can be expected to be 
Gaussian, the raw output is passed through the inverse function 
of a Gaussian CDF to linearize the output data. 

If the mean or standard deviation of the comparator offset 
distribution should change due to PVT or any other reason, the 
CDF transfer function would be shifted and scaled with respect 
to input voltage; however, the shape of the CDF remains the 
same with respect to output code. The digital output only 
represents the shape of the CDF, e.g. code 0 (signed) always 
represents the mean of the distribution, and code +699 always 
represents one standard deviation above the mean. Therefore, 
no calibration or tuning is required; the inverse Gaussian CDF 
is hard coded into the chip. The inverse function could be 
implemented as a lookup table, but this is unattractive due to 
the significant hardware requirement. Instead, the inverse 
function is approximated mathematically as a piecewise linear 
function, the result of which can be seen in Fig. 3. For 
hardware simplicity, the piecewise regions are chosen to use 
the slopes 1, 1.5, and 2.5 and extend the linear range to ±1.6 
standard deviations (σ) of the comparator offset distribution. 
Multiply by 1.5 (1+1/2) and 2.5 (2+1/2) can be implemented in 
hardware as simple bit-shifting and addition, which requires 
minimal hardware. By extending the input range to ±1.6σ, 90% 
of the total comparators are used. 

A standard digital synthesis procedure was followed to 
synthesize the circuit and generate the layout. In order to 
preserve the analog input path and ensure that the comparator 
module is not altered during synthesis, "don't touch net" and 
"don't touch" directives were given to the synthesis tool.  

Measurement Results 
The ADC is fabricated in a 90nm digital CMOS process and 

occupies 0.18mm2 (Fig. 6). The input is connected directly to 
the comparators without a S/H. The total parasitic input 
capacitance due to routing and 2047 comparator inputs is 
2.5pF. The measured standard deviation for an input 
common-mode of 800mV and a 1.2V supply is 45mV. As 
demonstrated in Fig. 4, a change to the input common-mode 
has a strong impact on the standard deviation of the 
comparator offset distribution. At a higher input 
common-mode the proportional difference in the NMOS 
overdrive voltages is reduced causing the distribution to spread 
out. Over 35dB SNDR is achieved with a 1MHz input up to a 
sampling rate of 210MSPS. This sampling rate is within the 
specification of the clock period given to the synthesizer and is 
limited by logic delays chosen by the synthesis tool. Power 
consumption is 34.8mW at 210MSPS from the 1.2V supply. 
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With a supply of 700mV, the ADC achieves 34.6dB SNDR for 
a 1MHz input at 21MSPS, and consumes 1.11mW. 

An interesting property of this ADC can be seen in Fig. 5. 
Because nonlinearity is dominated by the shape of a Gaussian 
CDF and the piecewise-linear function (Fig. 3), SNDR is 
relatively independent of input signal amplitude. Also in Fig. 5 
is a plot of SNDR as a function of input frequency. The 
degradation in SNDR is due to the parasitic filtering of the 
input through the automatically synthesized input nets. The 
roll-off at about 60MHz was predicted from extracted 
simulation. 

Conclusion 
By creating a comparator out of standard digital CMOS cells, 

a stochastic flash ADC can be implemented and synthesized 
entirely from Verilog code. The result is a truly all digital ADC 
with the only analog input being the input signal. 

Acknowledgements 
The authors would like to thank the Center for Design of 

Analog-Digital Integrated Circuits (CDADIC), Semiconductor 
Research Corporation (SRC), and Intel Corporation for 
supporting this research. 

References 
[1] T. Sundström and A. Alvandpour, “Utilizing Process Variations 

for Reference Generation in a Flash ADC,” IEEE Trans. Circuits 
and Systems II, vol. 56, pp. 364–368, May 2009. 

[2] D. C. Daly and A. P. Chandrakasan, “A 6b 0.2–0.9 V Highly 
Digital Flash ADC with Comparator Redundancy,” in IEEE 
ISSCC Dig. Tech. Papers, 2008, pp. 554–555. 

[3] C. Donovan and M. P Flynn, “A ‘digital’ 6-bit ADC in 0.25-μm 
CMOS,” IEEE J. Solid-State Circuits, vol. 37, no. 3, pp. 
432–437, Mar. 2002. 

[4] S. Weaver, B. Hershberg, P. Kurahashi, D. Knierim, and U. Moon, 
“Stochastic Flash Analog-to-Digital Conversion,” IEEE Trans. 
Circuits and Systems I, vol. 57, no. 11, pp. 2825-2833,  
Nov. 2010. 

-2.5 -0.73 0 0.73 2.5
-1511

-1024
-775
-549

0

549
775

1024

1511

Input Voltage [σ]

D
ig

it
al

 C
od

e

-1.17 1.17

-2.5 -0.73 0 0.73 2.5
-1511

-889

-549

0

549

889

1511

Input Voltage [σ]

D
ig

it
al

 C
od

e

1.17-1.17

2.5

1

1.5

1.5

2.5

Raw Gaussian Data Piecewise Linearized Output

-1511 -889 -549 0 549 889 1511
-2

-1

0

1

2

Digital Code

IN
L

 [
6-

b
it

 le
ve

l]

-1511 -889 -549 0 549 889 1511
-2

-1

0

1

2

Digital Code

IN
L

 [
6-

b
it

 le
ve

l]

 

 Raw Gaussian
Linearized Output

Simulation

Measurement

 
Fig. 3. Code-domain linearization is independent of  PVT and is a low 
hardware cost compared to a lookup table. 
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Fig. 5. SNDR measured vs. signal amplitude (fS=210MHz).  
SNDR, SFDR vs. input frequency also measured (fS=100MHz).
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Fig. 6. Micrograph and screen-capture of entire synthesized layout.

module adc(inp, inn, clk, dec_en, out);
input inp, inn, clk, dec_en;
output [12:0] out;

comparator U1( .INP(inp), .INN(inn), .CK(clk), .Q(q[0]) );
comparator U2( .INP(inp), .INN(inn), .CK(clk), .Q(q[1]) );
. . .
comparator U2047( .INP(inp), .INN(inn), .CK(clk), .Q(q[2047]) );

dsp U1 ( .c0b0(q), .clk(clk), .final(fastout) );

endmodule //adc

module comparator(INP, INN, CK, Q);
output Q;
input INP, INN, CK;

nand3x1 U1 ( .A(op), .B(INP), .C(CK), .Y(on) ); 
nand3x1 U2 ( .A(on), .B(INN), .C(CK), .Y(op) ); 
invx1 U3 ( .A(op), .Y(opn) );
invx1 U4 ( .A(on), .Y(onn) );
nor2x2 U5 ( .A(qn), .B(opn), .Y(Q) );
nor2x2 U6 ( .A(Q), .B(onn), .Y(qn) );

endmodule //comparator

module dsp(c0b0, clk, final);
output final;
input c0b0, clk;

always @(negedge clk) begin

{c1b1[0],c1b0[0]} <= c0b0[0]+c0b0[1]+c0b0[2];
. . .

if(sum > 1799)
final <= {sum2[11:0],1'b0} + {sum2[12],sum2[12:1]} - 1049;

else if(sum > 1573)
final <= (sum2) + {sum2[12],sum2[12:1]} - 274;

else if(sum >= 475)
final <= (sum2);

else if(sum >= 249)
final <= (sum2) + {sum2[12],sum2[12:1]} + 274;

else
final <= {sum2[11:0],1'b0} + {sum2[12],sum2[12:1]} + 1049;

end

endmodule //dsp

Verilog code
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. . .
comparator U2047( .INP(inp), .INN(inn), .CK(clk), .Q(q[2047]) );

dsp U1 ( .c0b0(q), .clk(clk), .final(fastout) );

endmodule //adc

module comparator(INP, INN, CK, Q);
output Q;
input INP, INN, CK;

nand3x1 U1 ( .A(op), .B(INP), .C(CK), .Y(on) ); 
nand3x1 U2 ( .A(on), .B(INN), .C(CK), .Y(op) ); 
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Fig. 1. Block diagram of Verilog code based stochastic flash ADC.

analog input

Φ

Φ

in+

Φ

Φ

in–out
Input > VDD – VTP

analog inputanalog input

Φ

Φ

in+

Φ

Φ

in–out
Input > VDD – VTPInput > VDD – VTP

 
Fig. 2. Analog comparator made from standard digital cells using two 
standard digital NAND3 cells. 
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Fig. 4. Measured transfer function and dynamic performance.


