
266 978-4-86348-165-7 2011 Symposium on VLSI Circuits Digest of Technical Papers

Digitally Synthesized Stochastic Flash ADC Using Only Standard Digital Cells

Skyler Weaver1, Benjamin Hershberg, Un-Ku Moon

1Now with Intel Corporation, Hillsboro, OR 97124, USA

Oregon State University, Corvallis, OR 97331, USA
skyler.weaver@intel.com, hershbeb@eecs.oregonstate.edu, moon@eecs.oregonstate.edu

Abstract
An ADC is synthesized entirely from Verilog code in 90nm

digital CMOS using a standard digital cell library. An analog
comparator is generated by cross-coupling two 3-input NAND
gates. The random comparator offsets are used as the ADC
references and are Gaussian. An implicitly aligned
three-section piecewise-linear inverse Gaussian CDF function
on chip linearizes the output. SNDR of 35.9dB is achieved at
210MSPS.

Introduction
An ADC is inherently a mixed signal system that contains

both analog and digital components. Classically, it is the
digital part that is synthesizable and can be generated from
Verilog code, whereas the analog portion is designed on the
transistor level with a fully customized layout. The comparator
can be thought of as the block that defines the boundary
between the analog and the digital circuitry. By moving the
comparator as close to the input as possible, an ADC becomes
as digital as possible. This essentially describes the flash ADC.
Without pre-amplification, the only remaining analog
components in a flash ADC are the comparators and their
analog references. To make a comparator that is compatible
with digital synthesis, it must be similar in size to that of
standard digital cells. An implication of this is that the
input-referred offset due to device mismatch will be significant.
Using the inherent comparator offsets as the comparator
references eliminates the need for analog references to be
provided at all [1-3]. If the last remaining analog block, the
comparator, can also be made out of standard digital cells, the
entire design can be synthesized from Verilog code (Fig. 1).

Implementation Details
An analog equivalent comparator can be constructed from

two standard CMOS NAND3 digital gates, as seen in Fig. 2.
Cross-coupling the two NAND3 outputs and A inputs creates a
positive-feedback latch similar to the back-to-back inverter
latch of conventional clocked comparators. The clock is fed to
the C inputs, which resets both outputs to high when the clock
is low. When the clock goes high, the output capacitance is
discharged through the three series NMOS devices.
Connecting the B inputs to a differential analog input causes
the discharging rate to be influenced by the input. Once one of
the outputs drops below a PMOS threshold, the
positive-feedback latch captures the outputs. The voltage of
the inputs should be high enough that the PMOS devices
(grayed out) that are connected to the input are effectively off.
Otherwise, the comparators may stay reset and never evaluate.

Using a comparator made up of standard digital cells, the
entire ADC is implemented from Verilog code. A flash ADC
that uses random comparator offsets as the comparator voltage
references, without calibration, requires 4b comparators for b
effective bits [4]. In this design, 2047 comparators are

implemented for a target of 5.5bits (35dB SNDR). The
comparator outputs are encoded into a binary value through a
Wallace adder, which is pipelined to reduce the logic delay.
The raw binary output of the ADC from a ramp input signal
will be the cumulative distribution function (CDF) of the
comparator offset. Since the CDF can be expected to be
Gaussian, the raw output is passed through the inverse function
of a Gaussian CDF to linearize the output data.

If the mean or standard deviation of the comparator offset
distribution should change due to PVT or any other reason, the
CDF transfer function would be shifted and scaled with respect
to input voltage; however, the shape of the CDF remains the
same with respect to output code. The digital output only
represents the shape of the CDF, e.g. code 0 (signed) always
represents the mean of the distribution, and code +699 always
represents one standard deviation above the mean. Therefore,
no calibration or tuning is required; the inverse Gaussian CDF
is hard coded into the chip. The inverse function could be
implemented as a lookup table, but this is unattractive due to
the significant hardware requirement. Instead, the inverse
function is approximated mathematically as a piecewise linear
function, the result of which can be seen in Fig. 3. For
hardware simplicity, the piecewise regions are chosen to use
the slopes 1, 1.5, and 2.5 and extend the linear range to ±1.6
standard deviations (σ) of the comparator offset distribution.
Multiply by 1.5 (1+1/2) and 2.5 (2+1/2) can be implemented in
hardware as simple bit-shifting and addition, which requires
minimal hardware. By extending the input range to ±1.6σ, 90%
of the total comparators are used.

A standard digital synthesis procedure was followed to
synthesize the circuit and generate the layout. In order to
preserve the analog input path and ensure that the comparator
module is not altered during synthesis, "don't touch net" and
"don't touch" directives were given to the synthesis tool.

Measurement Results
The ADC is fabricated in a 90nm digital CMOS process and

occupies 0.18mm2 (Fig. 6). The input is connected directly to
the comparators without a S/H. The total parasitic input
capacitance due to routing and 2047 comparator inputs is
2.5pF. The measured standard deviation for an input
common-mode of 800mV and a 1.2V supply is 45mV. As
demonstrated in Fig. 4, a change to the input common-mode
has a strong impact on the standard deviation of the
comparator offset distribution. At a higher input
common-mode the proportional difference in the NMOS
overdrive voltages is reduced causing the distribution to spread
out. Over 35dB SNDR is achieved with a 1MHz input up to a
sampling rate of 210MSPS. This sampling rate is within the
specification of the clock period given to the synthesizer and is
limited by logic delays chosen by the synthesis tool. Power
consumption is 34.8mW at 210MSPS from the 1.2V supply.

25-3

2672011 Symposium on VLSI Circuits Digest of Technical Papers

With a supply of 700mV, the ADC achieves 34.6dB SNDR for
a 1MHz input at 21MSPS, and consumes 1.11mW.

An interesting property of this ADC can be seen in Fig. 5.
Because nonlinearity is dominated by the shape of a Gaussian
CDF and the piecewise-linear function (Fig. 3), SNDR is
relatively independent of input signal amplitude. Also in Fig. 5
is a plot of SNDR as a function of input frequency. The
degradation in SNDR is due to the parasitic filtering of the
input through the automatically synthesized input nets. The
roll-off at about 60MHz was predicted from extracted
simulation.

Conclusion
By creating a comparator out of standard digital CMOS cells,

a stochastic flash ADC can be implemented and synthesized
entirely from Verilog code. The result is a truly all digital ADC
with the only analog input being the input signal.

Acknowledgements
The authors would like to thank the Center for Design of

Analog-Digital Integrated Circuits (CDADIC), Semiconductor
Research Corporation (SRC), and Intel Corporation for
supporting this research.

References
[1] T. Sundström and A. Alvandpour, “Utilizing Process Variations

for Reference Generation in a Flash ADC,” IEEE Trans. Circuits
and Systems II, vol. 56, pp. 364–368, May 2009.

[2] D. C. Daly and A. P. Chandrakasan, “A 6b 0.2–0.9 V Highly
Digital Flash ADC with Comparator Redundancy,” in IEEE
ISSCC Dig. Tech. Papers, 2008, pp. 554–555.

[3] C. Donovan and M. P Flynn, “A ‘digital’ 6-bit ADC in 0.25-μm
CMOS,” IEEE J. Solid-State Circuits, vol. 37, no. 3, pp.
432–437, Mar. 2002.

[4] S. Weaver, B. Hershberg, P. Kurahashi, D. Knierim, and U. Moon,
“Stochastic Flash Analog-to-Digital Conversion,” IEEE Trans.
Circuits and Systems I, vol. 57, no. 11, pp. 2825-2833,
Nov. 2010.

-2.5 -0.73 0 0.73 2.5
-1511

-1024
-775
-549

0

549
775

1024

1511

Input Voltage [σ]

D
ig

it
al

 C
od

e

-1.17 1.17

-2.5 -0.73 0 0.73 2.5
-1511

-889

-549

0

549

889

1511

Input Voltage [σ]

D
ig

it
al

 C
od

e

1.17-1.17

2.5

1

1.5

1.5

2.5

Raw Gaussian Data Piecewise Linearized Output

-1511 -889 -549 0 549 889 1511
-2

-1

0

1

2

Digital Code

IN
L

 [
6-

b
it

 le
ve

l]

-1511 -889 -549 0 549 889 1511
-2

-1

0

1

2

Digital Code

IN
L

 [
6-

b
it

 le
ve

l]

 Raw Gaussian
Linearized Output

Simulation

Measurement

Fig. 3. Code-domain linearization is independent of PVT and is a low
hardware cost compared to a lookup table.

0 0.5 1 1.5 2
22

26

30

34

38

Input Amplitude [σ]

S
N

D
R

 [
d

B
]

0 20 40 60 80 100 120
26

28

30

32

34

36

38

40

42

Input Frequency [MHz]

S
N

D
R

 a
n

d
 S

F
D

R
 [

d
B

]

 SNDR
SFDR

0 0.5 1 1.5 2
22

26

30

34

38

Input Amplitude [σ]

S
N

D
R

 [
d

B
]

0 20 40 60 80 100 120
26

28

30

32

34

36

38

40

42

Input Frequency [MHz]

S
N

D
R

 a
n

d
 S

F
D

R
 [

d
B

]

 SNDR
SFDR

Fig. 5. SNDR measured vs. signal amplitude (fS=210MHz).
SNDR, SFDR vs. input frequency also measured (fS=100MHz).

indicates comparator input 600μm

300μm

in
pu

t s
ig

na
l

digital
outputs

Fig. 6. Micrograph and screen-capture of entire synthesized layout.

module adc(inp, inn, clk, dec_en, out);
input inp, inn, clk, dec_en;
output [12:0] out;

comparator U1(.INP(inp), .INN(inn), .CK(clk), .Q(q[0]));
comparator U2(.INP(inp), .INN(inn), .CK(clk), .Q(q[1]));
. . .
comparator U2047(.INP(inp), .INN(inn), .CK(clk), .Q(q[2047]));

dsp U1 (.c0b0(q), .clk(clk), .final(fastout));

endmodule //adc

module comparator(INP, INN, CK, Q);
output Q;
input INP, INN, CK;

nand3x1 U1 (.A(op), .B(INP), .C(CK), .Y(on));
nand3x1 U2 (.A(on), .B(INN), .C(CK), .Y(op));
invx1 U3 (.A(op), .Y(opn));
invx1 U4 (.A(on), .Y(onn));
nor2x2 U5 (.A(qn), .B(opn), .Y(Q));
nor2x2 U6 (.A(Q), .B(onn), .Y(qn));

endmodule //comparator

module dsp(c0b0, clk, final);
output final;
input c0b0, clk;

always @(negedge clk) begin

{c1b1[0],c1b0[0]} <= c0b0[0]+c0b0[1]+c0b0[2];
. . .

if(sum > 1799)
final <= {sum2[11:0],1'b0} + {sum2[12],sum2[12:1]} - 1049;

else if(sum > 1573)
final <= (sum2) + {sum2[12],sum2[12:1]} - 274;

else if(sum >= 475)
final <= (sum2);

else if(sum >= 249)
final <= (sum2) + {sum2[12],sum2[12:1]} + 274;

else
final <= {sum2[11:0],1'b0} + {sum2[12],sum2[12:1]} + 1049;

end

endmodule //dsp

Verilog code

module dsp
Pipelined Wallace Tree

+ D
D

+ D
D

+
+

Piecewise Linearization

13 13

inp

inn x2047

module adc

module
dsp 13 out

random comparator offset is Gaussian

module adc(inp, inn, clk, dec_en, out);
input inp, inn, clk, dec_en;
output [12:0] out;

comparator U1(.INP(inp), .INN(inn), .CK(clk), .Q(q[0]));
comparator U2(.INP(inp), .INN(inn), .CK(clk), .Q(q[1]));
. . .
comparator U2047(.INP(inp), .INN(inn), .CK(clk), .Q(q[2047]));

dsp U1 (.c0b0(q), .clk(clk), .final(fastout));

endmodule //adc

module comparator(INP, INN, CK, Q);
output Q;
input INP, INN, CK;

nand3x1 U1 (.A(op), .B(INP), .C(CK), .Y(on));
nand3x1 U2 (.A(on), .B(INN), .C(CK), .Y(op));
invx1 U3 (.A(op), .Y(opn));
invx1 U4 (.A(on), .Y(onn));
nor2x2 U5 (.A(qn), .B(opn), .Y(Q));
nor2x2 U6 (.A(Q), .B(onn), .Y(qn));

endmodule //comparator

module dsp(c0b0, clk, final);
output final;
input c0b0, clk;

always @(negedge clk) begin

{c1b1[0],c1b0[0]} <= c0b0[0]+c0b0[1]+c0b0[2];
. . .

if(sum > 1799)
final <= {sum2[11:0],1'b0} + {sum2[12],sum2[12:1]} - 1049;

else if(sum > 1573)
final <= (sum2) + {sum2[12],sum2[12:1]} - 274;

else if(sum >= 475)
final <= (sum2);

else if(sum >= 249)
final <= (sum2) + {sum2[12],sum2[12:1]} + 274;

else
final <= {sum2[11:0],1'b0} + {sum2[12],sum2[12:1]} + 1049;

end

endmodule //dsp

Verilog code

module dsp
Pipelined Wallace Tree

+ D
D

+ D
D

+
+

+ D
D

+ D
D

+
+

+ D
D

+ D
D

+
+

Piecewise Linearization

13 13

inp

inn x2047

module adc

module
dsp 13 out

random comparator offset is Gaussian

Fig. 1. Block diagram of Verilog code based stochastic flash ADC.

analog input

Φ

Φ

in+

Φ

Φ

in–out
Input > VDD – VTP

analog inputanalog input

Φ

Φ

in+

Φ

Φ

in–out
Input > VDD – VTPInput > VDD – VTP

Fig. 2. Analog comparator made from standard digital cells using two
standard digital NAND3 cells.

-125 -100 -75 -50 -25 0 25 50 75 100 125
-1511

-1024

-512

0

512

1024

1511

Differential Input Voltage [mV]
O

u
tp

ut
 C

o
de

V
cm

 = 800mV

V
cm

 = 700mV

0 50 100 150 200 250
20

25

30

35

40

Sampling Rate [MSPS]

S
N

D
R

 [d
B

]

0 2 4 6 8 10 12

-70

-60

-50

-40

-30

-20

-10

0

Frequency [MHz] (8x decimation)
S

pe
ct

ra
l P

o
w

er
 [d

B
]

SNDR = 35.9dB
SFDR = 41.5dB
fS = 210 MHz

fin = 1MHz

Fig. 4. Measured transfer function and dynamic performance.

