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Abstract

Ring amplification is a technique for performing efficient amplifi-
cation in nanoscale CMOS technologies. By using a cascade of dynam-
ically stabilized inverter stages to perform accurate amplification, ring
amplifiers are able to leverage the key benefits of technology scaling,
resulting in excellent efficiency and performance. A generalized view
of basic small-signal theory is first presented, followed by a deeper dis-
cussion of the time-domain operation of a ringamp in the context of
a specific ringamp structure. We conclude with a survey of existing
ringamp implementations and techniques reported in literature.

1. Introduction

In ecology, bio-diversity is often a key indicator of the fitness and resilience of
an ecosystem. In a similar way, the diversity of viable solutions and approaches
available in the world of analog circuits is an indicator of the health of the analog
design ecosystem. The range of technical requirements for analog signal process-
ing blocks in practical design applications is as broad and vast as the ways in
which their commercial implementations are used to enhance the many facets of
society, work, and leisure. There is no one-size-fits-all solution here. Rather, a
variety of solutions allow us to select the best tool for the job and leverage tech-
nology scaling to the fullest.

For design in nanoscale CMOS, amplifiers are one area where diversity has ar-
guably been lost. Only a small sub-set of the viable amplifier topologies that once
ruled in micron and submicron CMOS design remain competitive in nanoscale
CMOS. The impact of this is readily observed in the study of ADCs, where
amplifier-less SAR ADC topologies have been able to leverage technology scal-
ing to consistently achieve conversion efficiencies far surpassing ADC topologies
that rely heavily on amplification [1, 2].



A common misconception is that this poor scaling performance is a fundamental
flaw of amplification itself. In actuality, it is mainly due to an adherence to the
old paradigms of how amplifiers should be built. Conventional opamp topologies
were conceived of at a time when 2.5V supplies were considered low-voltage,
and the intrinsic properties of transistors were quite different from that of a 14nm
FinFET [3]. Transistors were physically much larger with larger internal parasitic
capacitances often approaching even that of the load capacitance being charged.
Supply voltages provided much more headroom for stacking devices, and intrinsic
device gains were higher. All these factors created a design world where cascod-
ing was preferable to cascading, current biasing was necessary, and small-signal
analysis was the prevailing and sufficient design paradigm.

Since those times, a lot has changed. Semiconductor technology has continued to
evolve in a direction aimed at improving density, efficiency, and speed for digi-
tal logic gates. The ability of a conventional opamp topology to flourish in this
new environment is fundamentally limited due to inherent incompatibilities in the
underlying approach. Applying additional techniques such as calibration, gain-
enhancement, and output-swing enhancement may enable an opamp to function
in nanoscale environments, but it won’t grant it the ability to scale at the same
pace as digital performance improvements. A truly scalable amplifier must oper-
ate natively in its environment, in a way that implicitly uses the characteristics of
scaled CMOS to its advantage, transforming potential weaknesses into inherent
strengths. Since technology scaling is deliberately designed to favor the time-
domain world of high-speed digital, viable nanoscale analog techniques are likely
to be found in the time-domain realm as well. In order to fully exploit the abil-
ities of a transistor, the biasing and small-signal properties of the device must
be viewed as highly coupled, time-dependent variables which can be applied as
feedback to each other with respect to time.

Here we explore one such technique: ring amplification. A ring amplifier (ringamp,
RAMP) is a small modular amplifier derived from a ring oscillator which naturally
embodies all the essential elements of scalability. It can amplify with rail-to-rail
output swing, efficiently charge large capacitive loads using slew-based charging,
scale well in performance according to process trends, and is simple enough to be
quickly constructed from only a handful of inverters, capacitors, and switches.

2. A small-signal, steady-state perspective

The transient, large-signal, and small-signal operation domains are often much
more interdependent in ring amplifier toplogies than classical amplifier topolo-
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Fig. 1: A generalized three-stage ringamp in (a) is shown for the specific case of
a three-inverter ring oscillator in (b). An example frequency response of (b) is
given in (c).

gies. Despite this added complexity, as a starting point we can begin with the
steady-state small-signal analysis of classical amplifier analysis.

Simply put, a ringamp is a multi-stage amplifier stabilized by a dominant output
pole. A generalized three stage ringamp is shown in Fig. 1a, consisting of three in-
verting gain stages and optional stabilization networks. For now, we will consider
the simple case where the stabilization networks have a steady-state, frequency-
independent gain of 1 and each gain stage is a single-pole system. This results in
Fig. 1b: a cascade of three inverting stages.

The open-loop gain of this three pole system is given by



H(s) =
gm1ro1 · gm2ro2 · gm3ro3

(1 + sro1Cp1)(1 + sro2Cp2)(1 + sro3(Cp3 + CL))
(1)

where rox is the impedance seen at pole/node X, gmx is the trans-conductance of
inverter stage X, and Cpx is the total capacitance seen at pole/node X.

Recalling basic stabilization theory, in order to transform this structure from an
unstable ring oscillator into a stable ring amplifier, we must create a sufficiently
large ratio between the lowest frequency pole in the system and the higher fre-
quency poles. Given that an external load capacitance is required for any prac-
tical switched-capacitor design scenario, it is then relatively simple to prove that
the strategy of stabilizing with a dominant output pole (p3) will always yield the
maximum amplifier bandwidth and highest efficiency.

The optimal output pole location can be created by first placing p1 and p2 at the
highest frequencies possible and then adjusting the location of p3 until it is at a
sufficiently low, stabilizing frequency. Critically, for a three-stage opamp using
conventional techniques and current biasing, this would not yield a very practi-
cal solution. The internal poles would still be relatively large, which would limit
bandwidth and require an often impractically large explicit load capacitance at the
output. Miller-compensation can be used to make other poles in the system dom-
inant instead, but at high price in terms of bandwidth and efficiency. In the case
of a ringamp with very small transistors used in gain stages 1 and 2 and dynamic
biasing (i.e. just a basic inverter in this case), output pole stabilization becomes
a realistic possibility. Poles p1 and p2 can be placed at very high frequencies,
which allows us to place p3 at a sufficiently stable location using a much more
reasonably sized load capacitance.

This analysis describes the steady-state condition that a ringamp must reach in
order to stabilize, but it does not tell us anything about how it does it. In many
application scenarios, Fig. 1b is not the optimal implementation, and may not even
be capable of meeting the required performance specs. At this point it is worth
revisiting Fig. 1a and re-considering the “how” of ringamp stabilization. In the
next section, we will take a closer look at a particular ringamp structure that uses
time-domain feedback to dynamically adjust the output pole location and thereby
relax stability constraints. Afterwards, in Section 4, we will look at other existing
solutions, including techniques to extend ringamp operation into high accuracy
applications.
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Fig. 2: The ringamp and basic switched-capacitor feedback network that we will
primarily consider in this section. Devices and parameters that are referenced
throughout the paper are labeled.

3. Utilizing time-domain feedback

We will now consider the specific case of the ringamp topology shown in Fig. 2
that utilizes time-domain feedback to enhance stabilization, and thereby improve
efficiency. Fundamentally, the ringamp of Fig. 2 is a ring oscillator that has been
split into two separate signal paths. A different offset is embedded into each signal
path in order to create a range of input values for which neither output transistor
MCN nor MCP of Fig. 2 will fully conduct. If this non-conduction “dead-zone”
is sufficiently large, the ring amplifier will operate by slewing-to, stabilizing, and
then locking into the dead-zone region. When placed in the example switched ca-
pacitor MDAC feedback structure also shown in Fig. 2, this charging and settling
behavior results in the waveforms of Fig. 3b.

Before we examine how and why this occurs, it is useful to first understand some
of the basic characteristics of the structure itself. To begin with, consider the
capacitor C1 of Fig. 2. C1 is used to cancel the difference between the MDAC
virtual-node sampling reference (VCMX) and the trip-point of the first stage in-
verter. This ensures that the ideal settled value for VIN will always be VCMX ,
independent of the actual inverter threshold. Any sources of offset that are gener-
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Fig. 3: Input and output charging waveforms of Fig. 2. In (a), when VDZ = 0mV,
the ringamp is functionally identical to a three-inverter ring oscillator. In (b),
the dead-zone is set large enough to generate stability (VDZ = 170mV) and the
ringamp functions as an amplifier.

ated after the first stage inverter will not be removed by C1, but the input-referred
value of such offsets will typically be negligibly small.

The dead-zone of the ringamp in Fig. 2 is embedded prior to the second stage in-
verters by storing a voltage offset across capacitors C2 and C3. Any value for VIN
within the dead-zone region is a viable steady-state solution for the ring amplifier,
and the input-referred value of the dead-zone will determine the overall accuracy
of the amplifier for most practical cases. In other words, the error at VIN when
the ringamp has stabilized and locked will be

−
∣∣∣∣VDZ2·A1

∣∣∣∣ ≤ εVIN ≤
∣∣∣∣VDZ2·A1

∣∣∣∣ (2)

where VDZ = 2VOS , A1 is the final settled small-signal gain of the first stage
inverter, and finite gain effects of the latter stages are ignored (revisited later).

Considering all this, we will now examine the interplay of small-signal, large-
signal, and time-domain operation in a ringamp. Its behavior can be subdivided
with respect to different modes of operation in time: slewing, stabilization, and
steady-state. To illustrate key concepts, we will use the exaggerated charging
waveform of Fig. 4 (taken from the ring amplifier of Fig. 2) that has been designed
with relatively low bandwidth, excessive drive current, and a dead-zone size that
biases the ringamp right at the edge of stability. Although one would never wish
to make a real design in this way, as a teaching example it is quite useful. VCMX
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Fig. 4: Example ring amplifier operation for an exaggerated design biased at the
edge of stability, showing the three key phases of operation: 1) initial ramping, 2)
stabilization, and 3) steady-state.

is set to 0.6V, and thus the ideal settled value of VIN will also be 0.6V. For the
sake of simplicity and generality VOUT is not shown (because it is simply a scaled,
shifted, signal-dependent replica of VIN ). Unless otherwise stated, any mention
of the amplitude of the fed-back signal will refer to the amplitude seen at VIN .

In Fig. 4 we can clearly see three main phases of operation. Initially, from 0ns
to 2ns, the ringamp rapidly charges toward the dead-zone. Then, from 2ns to
about 14ns it oscillates around the dead-zone region as it attempts to stabilize.
By 15ns, with the output transistors MCP and MCN both completely cutoff, the
ring amplifier reaches a steady-state solution within the dead-zone, and remains
locked.

Initial Ramping

In the initial slew-charging phase of operation, the ring amplifier is functionally
equivalent to the circuit of Fig. 5. The first two stages of the ring amplifier act like
a pair of bi-directional continuous-time comparators that correctly select which
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Fig. 5: Conceptual model of a ringamp during the initial slew-charging phase
of operation. This model only applies to the initial charging phase and does not
include the key ringamp stabilization mechanisms. VOS(IN) is the input-referred
value of the dead-zone offset.

output transistor (MCN orMCP ) to use depending on the value of the input signal.
The selected output transistor then operates as a maximally-biased current source
and charges the output load with a ramp. In this initial charging phase the ringamp
behaves similar to a zero-crossing based circuit [4] [5].

The ramping phase ends when the input signal crosses the threshold of the com-
parator and the current source turns off. Due to the finite time delay of the com-
parator, there will be some amount of overshoot beyond the comparator threshold,
which will be given by:

∆Vovershoot =
td · IRAMP

COUT
(3)

where td is the time delay of the comparator decision, IRAMP is the current sup-
plied by the active current source, and COUT is the total loading capacitance seen
at the output. This overshoot is with respect to the trip point, which will be on the
boundary of the dead-zone. It will be more useful later on if we consider Eq. 2
as well, and express the input-referred overshoot with respect to the ideal settled
value (the center of the dead-zone):

∆Vinit =
td · IRAMP

ψ COUT
−

∣∣∣∣VDZ2·Â1

∣∣∣∣ (4)

where ψ is the scaling factor that refers the output overshoot to the ringamp’s
input (and depends on feedback factor, parasitics, and feedback structure) and Â1

is the effective gain of the first stage inverter at the end of the ramping operation
(explained later).



Stabilization

After the initial charging ramp, the ring amplifier will begin to oscillate around
the target settled value with amplitude ∆Vinit. With no dead-zone, the structure
is functionally identical to a three-inverter ring oscillator, and will continue to
oscillate indefinitely (Fig. 3a). However, as the size of the dead-zone is increased,
the ringamp will eventually reach an operating condition where it is able to self-
stabilize, such as in Fig. 4. If the dead-zone size is increased further still, the
time required to stabilize decreases substantially, and for most practical designs,
a ringamp will stabilize in only one or two periods of oscillation (i.e. Fig. 3b).

The most fundamental mechanism in the process of stabilization is the progressive
reduction in the peak overdrive voltage applied to the output transistors MCN and
MCP on each successive period of oscillation. This effect is illustrated in Fig. 4
by the progressive decrease in amplitude of the signals VBP and VBN . When the
following relation is true, the trough (minimum value) of VBP will be limited by
the finite-gain of the first two stages, and begin to de-saturate from rail-to-rail
operation:

Â2[Â1(min(ṼIN)− VCMX)− VOS] ≥ VSS − VCM (5)

(where ṼIN is the peak-to-peak amplitude, and Â1, Â2 are the negative-valued
effective instantaneous inverter gains). A similar relation can also be expressed
for the lower signal path and VBN :

Â2[Â1(max(ṼIN)− VCMX) + VOS] ≤ VDD − VCM (6)

The key point to notice in these expressions is that each signal path is being fed
a different shifted replica of the oscillatory waveform generated at VA. The upper
path is given a replica where the peaks of the wave are lowered closer to the
second stage inverter’s threshold, and the lower path is given a replica where the
troughs of the wave are raised closer to the threshold of the second stage inverter.
For a sufficiently large shift in each path (VOS), this creates the possibility that
even for relatively large values of ṼIN , finite gain effects will simultaneously limit
the overdrive voltage that is applied to both MCP and MCN . This stands in stark
contrast to the behavior of a three-inverter ring oscillator, where the decrease in
VOV of one output transistor necessarily means an increase in VOV applied to the
other.

When Eqs. 5 and 6 are true, the resulting reduction in VOV applied to the out-
put transistors MCN and MCP will reduce the magnitude of the output current



IRAMP . This decrease in output current will also cause a decrease in the ampli-
tude of ṼIN by a proportional amount, due to Eq. 4. The left sides of Eqs. 5 and 6
are therefore reduced further, and the VOV ’s ofMCN andMCP will decrease even
more for the next oscillation cycle. This effect will continue to feedback until the
input signal amplitude becomes smaller than the input-referred value of the dead-
zone, at which point the ring amplifier will stabilize and lock into the dead-zone.

If we combine Eqs. 5 and 6 and rearrange, we see that in order to trigger this
progressive overdrive reduction effect, the input signal must satisfy the following
relation:

ṼIN ≤
1

Â1

(
VDD − VSS

Â2

− VDZ
)
. (7)

Furthermore, at the beginning of the stabilization phase:

ṼIN = 2·∆Vinit (8)

Finally, using Eqs. 3, 4, 7, and 8, we can express the stability criterion in terms of
the dead-zone (i.e. settled accuracy) and the initial slew rate (i.e. speed):

td · IRAMP

ψ COUT
≤ 1

2·Â1

(
VDD − VSS

Â2

− 2·VDZ
)

(9)

Recall once again that Â1 and Â2 are negative valued gains.

From this relation we see that there is a clear design tradeoff between accuracy,
speed, and power. Let’s assume for a moment that only td, IRAMP , and VDZ
can be adjusted. To increase speed, one can either increase the initial ramp rate
or decrease the time required to stabilize. Both options require sacrificing either
accuracy (by increasing VDZ) or power (by decreasing td). Likewise, to increase
accuracy (by decreasing VDZ), one must either decrease IRAMP or decrease td
accordingly. While these simple tradeoffs serve as a good starting point, as we
will soon discover, every parameter in Eq. 9 is variable to some extent.

The discussion thus far is only a first-order model, and there are additional band-
width, slewing, and device biasing dynamics which are not represented. Let’s
take a moment to evaluate this model in the form of a practical example. Con-
sider a pseudo-differential ringamp where A1 = A2 = −25VV , VDZ = 100mV ,
VDD = 1.2V , and VSS = 0V . By Eq. 2, the input-referred size of the dead-zone
will be about 4mV, which for a 2V pk-pk input signal would ideally be accu-
rate enough to achieve an input-referred SNDR of 54dB. By Eq. 7, the maximum
allowable peak-to-peak amplitude of ṼIN is approximately 6mV, and by Eq. 4,
the maximum allowable input-referred overshoot at the end of the initial ramping
phase must be less than 5mV.



This isn’t a very encouraging result, since such a small overshoot will place a
tight constraint on the parameters in Eq. 3. However, if one were to simulate this
same scenario, it will turn out that the peak-to-peak amplitude of oscillation can
be significantly larger than the predicted 6mV and still achieve stability. A closer
look at Fig. 4 reveals an important contributor to this disparity between theory and
practice. Although the AC small-signal gain of the first stage inverter, A1, may be
−25VV , the effective instantaneous value

Â1(t) =
VA(t)

VIN(t)
(10)

in the actual transient waveform will be several times smaller at the beginning of
stabilization. Thus, although the overall accuracy of the ringamp is determined
by the final, settled, small-signal value of A1, the stability criterion is determined
by the initial, transient, large signal effective value of A1. This reduction in A1

occurs because the first stage inverter inherently operates around its trip point,
where it will be slew limited. The maximum slewing current that the inverter can
provide will be

Islew = IP − IN (11)

and for a square law MOSFET model, this will become:

Islew = 2k′
W

L

(
VDD − VSS

2

)
VIN (12)

Notice here that the slew current is linearly related (not quadratically) to the input
voltage. Thus, for the first stage inverter, slew rate limiting (and finite bandwidth)
has an important impact on determining the effective value of Â1 during stabi-
lization (and to a lesser extent, the value of Â2). This dynamic adjustment of
the effective inverter gain is a very attractive characteristic, and improves the de-
sign tradeoff between speed, accuracy, and power by a significant factor. Similar
effects also influence the operation of the second stage inverters in an additional
way: although Eqs. 5 and 6 assume rail-to-rail swing for the second stage inverters
when ṼIN is large, in reality the output swing of the second stage inverters may
never completely reach rail-to-rail, regardless of the value of ṼIN due to slew rate
limiting, finite bandwidth, and triode device operation.

Relating the discussion of progressive overdrive reduction in this section back to
the steady-state stability discussion of Section 2, this behavior can be conceptual-
ized as a dynamic adjustment of the ringamp’s output pole corner frequency. The
decrease in output current due to VOV reduction increases the output impedance
(Ro) of the ringamp, and pushes the output pole (formed by Ro and CLOAD) to
lower frequency. As the VOV reduction effect gains momentum on each succes-
sive oscillation half-period, the output pole progressively pushes to lower and
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lower frequency. By the time the ringamp is locked into the dead-zone and the
output transistors are in cutoff, Ro is infinite and the output pole is at DC.

Steady State

Thus far, we have defined the steady-state condition for a ring amplifier as the
complete cutoff of both output transistors, with the input signal lying solidly
within the dead-zone, such as is the case in Fig. 4. However, considering the
discussion about pole adjustment in the previous paragraph, it’s clear that the
ringamp can in fact be stable for a range of low frequency output pole locations
down to DC. Such a situation will in practice occur often, even for a large dead-
zone, since there is always a finite probability that the ring amplifier will happen
to stabilize right at the edge of the dead-zone. If that happens, one of the out-
put transistors will still conduct a small amount of current to the output, and may
never fully shut off before the amplification period ends. The existence of this sta-
ble, boundary-region “weak-zone” is illustrated in the VIN vs. IOUT plot of Fig. 6.



The weak-zone isn’t an inherent problem for ring amplification operation, since
any low-bandwidth settling will only serve to further improve accuracy. However,
there are sometimes higher-level structural considerations that make it advanta-
geous to ensure that both output transistors are completely non-conducting once
settled. We will see some designs where this is the case later on, in Section 4.

3.1. Key Advantages

Ring amplifiers are in many ways both structurally and functionally quite differ-
ent from conventional opamps, and it is in these differences that the ringamp finds
a unique advantage in the context of modern low-voltage CMOS process tech-
nologies. In this section, we will examine several of these important benefits in
greater detail.

Output Compression Immunity

In low-voltage scaled environments, kT/C noise, SNR, and power constraints will
typically be dictated by the usable signal range available [1], and any practical
amplification solution for scaled CMOS must therefore utilize as much of the
available voltage range as possible. As it turns out, ring amplifiers are almost
entirely immune to output compression, and this enables them to amplify with
rail-to-rail output swing.

To understand the basis of this output compression immunity, we must consider
two scenarios. First, imagine a ringamp whose dead-zone is large enough that
when the ringamp is locked into the center of the dead-zone, both MCN andMCP

will be in cutoff. In other words, when:

VDZ ≥
∣∣∣∣VDD − VSS − 2VT

A2

∣∣∣∣ (13)

As a rule of thumb, this relation will usually hold for low and medium accuracy
ringamps up to about 60dB. Under this scenario, MCN and MCP function as cur-
rent sources whose linearity and small-signal gain has no appreciable effect on
settled accuracy. The internal condition of the ringamp depends only on the sig-
nal at the input, and it will continue to steer toward the dead-zone until MCN and
MCP are completely cut-off, regardless of whether they are in saturation or triode.
Final settled accuracy will be governed by Eq. 2, independent of the characteris-
tics at the output.



Now let’s consider the condition where Eq. 13 does not hold. This will occur
when the dead-zone is very small, and accuracies in the 60dB to 90dB range are
desired. Although other practical issues in the ringamp structure of Fig. 2 may
hinder such design targets, we will consider a ringamp structure later in Section 4
where it applies. In this scenario, the stability region of Fig. 6 is so small that the
two weak-zones touch, andMCN andMCP will still conduct a small amount once
settled. The ringamp’s steady state condition will essentially be that of a three
stage opamp, and the open loop gain will be the product of the three stage gains.
With no true dead-zone, the distortion term of Eq. 2 becomes zero, and finite
loop gain will become the fundamental limitation on accuracy. At first glance,
generating sufficient loop gain appears to be a problem, since the gain of MCN

and MCP will depend on output swing (which must be as large as possible in
nanoscale CMOS). Consider the case where all three stages have a gain of 25dB
when operating in saturation. In the best case, the open loop gain will be 75dB,
and in the worst case perhaps 50dB. Even in the best case, this seems to suggest
that to build an 80dB accurate ringamp, an additional gain stage is required.

Luckily, there is another effect at play here. In the ideal square-law MOSFET
model MCN and MCP will be in saturation when VOV < VDS . Furthermore,
the small signal output impedance, ro, is inversely proportional to the drain cur-
rent, ID. In the context of the progressive overdrive voltage reduction that oc-
curs in ringamp stabilization, both VOV and ID will in fact trend towards zero.
This implies that during steady-state, MCN and MCP will remain in saturation or
weak-inversion even for very small values of VDS , and moreover, that their gain
will be enhanced by a dynamic boost in ro. Thus, even for a nominal open loop
gain of 75dB, with a wisely chosen topology it is possible to have an enhanced
steady-state gain of at least 90dB, even when swinging close to the rails.

Although output swing has little effect on ringamp accuracy, it will indeed affect
speed, both with respect to slewing and settling. In the initial ramping phase,
the selected current source transistor will be biased with the maximum possible
VOV , and this guarantees that for much of the possible output range it will initially
be operating in triode. As seen in Fig. 7, for settled output values near mid-rail,
IRAMP will be the highest and the initial ramping will be faster, but more time
will be required to stabilize for the reasons discussed in Section 3. Likewise, for
values close to the rails, IRAMP will be smaller, so the initial ramping will be
slower but the stabilization time will be shorter. For the most part, this works
out quite nicely, since the total time required to reach steady state in each case
turns out to be approximately the same. However, for extreme cases very close
to the rails, the large RC time constant of the output transistor in triode operation
will require a comparatively long time to reach its target value. Ultimately, it is
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this RC settling limitation that will usually dictate the maximum output swing
possible for a given speed of operation.

Slew-Based Charging

Whereas a conventional opamp charges its output load with some form of RC-
based settling, the output transistors MCN and MCP in the ring amplifier behave
like digitally switched current sources, and charge the output with slew-based
ramping. This is a much more efficient way to charge, since only one of the
current sources in Fig. 5 will be active at a time, and the only power dissipated
will be dynamic. Furthermore, during the initial ramping operation, MCN or
MCP (whichever is selected) will be biased with the maximum VOV possible for
the given supply voltage. This is a major benefit, because it means that even for
large capacitive loads, small transistor sizes can still produce high slew rates, and
with small output transistors, the second stage inverters will be negligibly loaded
by MCN /MCP . This effectively decouples the internal power requirements from
that of the output load size, and for typical load capacitances in the femto and
pico-farad range, the internal power requirements are more-or-less independent
of output capacitance. This unique property stands in stark contrast to the power-
loading relationship for a conventional opamp, where settling speed is typically



proportional to gm/CLOAD. Even for large load capacitances, where the size of
MCN /MCP does have an appreciable effect on the internal power requirements,
the ratio of static-to-dynamic power will scale very favorably.

Performance Scaling with Process

In order for a technique to be truly scalable, it must meet two criteria. First, the
given technique must operate efficiently in a scaled environment. This require-
ment has been our primary focus thus far. Second, the technique must inherently
scale with advancing process technology, improving in performance simply by
migrating into a newer technology. It is this second criteria that we will discuss
now.

Intuitively, the ring amplifier seems like a prime candidate to benefit from process
scaling, simply due to its structural similarity to a ring oscillator. The stabil-
ity criterion of Eq. 9 suggests this to be true. As stated previously, the internal
power consumption of a ringamp is governed much more by inverter power-delay
product and internal parasitics than the size of the output load (in stark contrast to
conventional opamps). Since the power-delay product of an inverter decreases ap-
proximately linearly in accordance with decreasing feature size [6], the ringamp’s
inverter chain propagation delay, td, can be expected to scale according to digi-
tal process performance as well. With the relationships in Eq. 9, this reduction
in td can be directly traded for an improvement in any of the three main design
specifications: speed, accuracy, and power.

The simple scaling experiment conducted in [7] suggests that this is indeed the
case. The results of the test are shown in Fig. 8. The upper trend line represents
predicted power efficiency with the power spent in charging the fixed (not scaled)
load capacitance included. The lower trend line shows the power efficiency with
the ideal power required to charge the load capacitance subtracted out. The re-
sult is a power efficiency trend that scales very well with advancing technology
node. Although there are not yet enough measured ringamp designs to verify pre-
dicted trend, we do see a similar level of speed and efficiency scaling between the
0.18µm CMOS design of [8] and the 65nm CMOS design of [9]. Furthermore,
recent investigations of ringamp structures in 28nm CMOS have produced results
that also support this hypothesis.
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Fig. 8: Approximate power efficiency scaling trends predicted by [7].

4. A Diversity of Solutions

There are many different opamp structures available to designers to meet diverse
needs. The same should also be true for ringamps. Accuracy, speed, power, and
design effort are all important factors in choosing the best ringamp structure for
the job. Although the exploration of possible ringamp techniques is still in its
infancy, we can at least look at the comparative merits of those ringamp imple-
mentations which are already known and reported in the literature.

To begin with, for high-speed, medium-accuracy amplification, the ringamp cir-
cuits of Fig. 1b and Fig. 2 are both attractive candidates. In technologies where
the gain of the ringamp is more than that required for accuracy specifications, the
ringamp of Fig. 2 is a good choice. Technologies where this is the case include
older processes such as 0.18µm, 0.13µm, and 90nm, and possibly even some
newer processes such as 14nm FinFET, where inverter gains are improved [3].
The dead-zone embedding in the structure of Fig. 2 allows bandwidth to be de-
coupled from the small-signal gain of the inverters. Even if the small-signal gain



VOUT

CLVIN

RB

Fig. 9: Self-biased ringamp structure of [9]

of the inverter chain is very high, the dead-zone allows us to effectively reduce it
and improve the gain-bandwidth product while still benefiting from the fast tran-
sient behavior associated with high gain inverters. This structure is used for the
purposes of medium-accuracy amplification in the 10.5b pipelined ADC of [8],
and as a sub-component of the 15b Split-CLS pipelined ADC of [10] and the
Composite Ringamp Amplifier Block of [11].

Alternatively, if working in a technology with low intrinsic inverter gains such as
65nm, 45nm, 32nm, 28nm, and 22nm planar CMOS, it may not be possible to set
a true dead-zone with the structure of Fig. 2. In this case, the simple inverter chain
of Fig. 1b may actually be a realistic option to consider. The structure still scales
excellently and retains many (although not all) of the benefits of a dead-zone stabi-
lized ringamp. However, the ringamp structure introduced in [9], shown in Fig. 9,
provides an even better solution for most scenarios. Like Fig. 1b it is also a sin-
gle chain of inverters. However, it uses resistor RB to embed a weak-zone offset
for improved dynamic biasing, enhancing both efficiency and speed. The design
of [9] also introduces the idea of using the time information contained in the inter-
nal nodes of a ringamp to perform quantization, and this time-domain information
is used to build a 1.5b pipeline stage sub-ADC that results in significantly relaxed
timing constraints.

For design scenarios requiring high accuracy amplification, a different approach
to ringamp design is required. Fully differential operation is typically mandatory,
and the amplifier must either produce very high effective gain or be assisted by
calibration. In [10] the technique of Split-CLS [12] is used to combine a pseudo-
differential ringamp structure with a fully differential telescopic opamp. Fig. 10a
shows the basic principle of this technique. The ringamps provide an initial fast
and coarse charge of the output. Then, the opamp is coupled into the output via the
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Fig. 10: Ringamp structures suitable for high-accuracy applications.

level shifting capacitors (CCLS) and proceeds to fine settle the output with greatly
relaxed slew and swing requirements. At the end of an amplification period, the
total accuracy of the output is the combined accuracy of the ringamp and the
telescopic opamp. This structure is capable of very high accuracy, and allows a
robust differential opamp to be the final determinant of accuracy.

Another approach to precision amplification is the structure of Fig 10b. Intro-
duced in [11], a Composite Ring Amplifier Block uses only ring amplifiers (no
opamps) and consists of a coarse but fast and efficient pseudo-differential ringamp
connected in parallel with a differential-input, single-output precision ringamp.
When placed in this parallel configuration, the coarse ringamp will automatically
and asynchronously cutoff and transfer control to the fine ringamp at the correct
moment of operation. Initially, all ringamps are enabled, and contribute charge



VOUT
C2

MCP

MCN

R
S

T

R
S

T

VCM VCM + VOS

C3

VCM

R
S

T

R
S

T

VCM - VOS

+
VDZ2

-

VIN+ +

-VIN- C1

+

-
replica

VCMX
VCM

A1 A2

C1B

C2B

C3B

RGC

A3

R
S

T

R
S

T

S
E

T

S
E

T

S
E

T
S

E
T

Fig. 11: Precision ringamp circuit used in the Composite Ring Amplifier Block
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to the output. However, the coarse ringamps have a larger slewing capability and
dominate the initial charging behavior, quickly settling both the differential and
common-mode levels close to their final target values. As the coarse ringamps
enter their dead-zone, they automatically disconnect from the output. The fine
ringamp remains active, however, since its stability region (weak-zone) is nec-
essarily quite small and thus completely enclosed by the larger stability region
(dead-zone) of the coarse ringamps. With the common-mode level already set-
tled to sufficient accuracy by the coarse ringamp’s CMFB, and VO+ floating, the
fine ringamp simply settles VO− differentially around a stationary VO+. Thus,
in addition to providing speed enhancement this scheme removes the need for
common-mode feedback in the fine ringamp, permitting a single ended output to
be used without loss of accuracy, thereby minimizing both complexity and power.

A simplified schematic of the fine ringamp is depicted in Fig. 11. Notably, the
offset VDZ2 is embedded just prior to MCN /MCP , and allows the settled value of
VOV to be precisely set (and weak-zone operation to be guaranteed). However, the
constraint that this places on the value of VDZ2 consequently limits its ability to
tune stability. This is solved by observing that stability is actually determined by
the input-referred value of VDZ2, which can also be tuned by adjusting the gain
of either the first or second stage inverter. Thus, a tunable gain-control resistor
(RGC) is used to set the size of the stability region. There is almost no linearity
requirement for this tuned resistance, and it is implemented in [11] as a simple



Table 1: Summary of ringamp ADCs

VLSI ’12 [8] ISSCC ’12 [10] VLSI ’13 [11] ISSCC ’14 [9]

Technology 0.18µm 0.18µm 0.18µm 65nm

Supply Voltage 1.3 V 1.3 V 1.2 V 1.2 V

Resolution 10.5b 15b 15b 10.5b

Input Range 2.2 V pk-pk 2.5 V pk-pk 2.4 V pk-pk 2 V pk-pk

Sampling Rate 30 Msps 20 Msps 20 Msps 100 Msps

SNDR 61.5 dB 76.8 dB 75.9 dB 56.3 dB

SFDR 74.2 dB 95.4 dB 91.4 dB 67.6 dB

Total Power 2.6 mW 5.1 mW 2.96 mW 2.46 mW

FoM 90 fJ/c-step 45 fJ/c-step 29 fJ/c-step 46 fJ/c-step

3-bit DAC composed of tiny MOSFET resistive elements.

A summary of the measured performance of the ringamp-based pipelined ADCs
discussed here is provided in Table 1.

5. Conclusion

Even in the initial design attempts listed in Table 1, we already see very promis-
ing performance numbers being achieved across a range of target accuracies and
speeds. Performance will continue to improve in the future for a couple of rea-
sons. First, simply scaling down into newer technology nodes should yield sub-
stantial benefits. Second, the potential for using time-domain properties to im-
prove ringamp efficiency is by no means exhausted. For example, the idea to
exploit the time-domain behavior of a ringamp to perform quantization in [9] is
a solution with attractive benefits. Some of the insight gained in the research of
other emerging time-domain techniques such as VCO-based quantizers [13] may
prove relevant to ringamp research as well.

Just how many niches in the circuit ecosystem ring amplification can enhance di-
versity in remains to be determined. It is already evident that they are useful in
pipelined ADCs. Many other ADC architectures can benefit from ringamps as
well. For example, they are an enticing candidate for use in the integrator struc-
tures in discrete-time sigma delta modulators. Many of the tradeoffs associated
with conventional opamps have influenced which Σ∆ topologies are ultimately
the most successful. Now that we have an amplifier where swing, loading capaci-
tance, and gain aren’t nearly as constraining, we can discard old assumptions and
reconsider the possibilities. This may even allow discrete-time Σ∆ ADCs to ex-



tend their accuracy and robustness benefits to bandwidths on the order of tens of
megasamples that are currently achieved only by continuous-time Σ∆ ADCs [2].

There is also much to explore beyond the realm of ADCs. Anything with a capac-
itive load is a prime candidate for consideration. This includes switched-capacitor
circuits such as discrete-time filters as well as a variety of sensing and imaging
applications. In all these cases, it is once again useful to re-examine many of the
assumptions about what constitutes an “optimal” structure for a given application
with specific regard to the strengths and weaknesses of ringamps. In some cases,
ringamps may provide the best solution. In other cases, a different technique in
the circuit ecosystem will. This is the strength of circuit diversity.
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