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Abstract 
We present a single-channel fully-dynamic pipelined SAR 

ADC that leverages a novel quantizer and narrowband dither 
injection to achieve fast and comprehensive background 
calibration of DAC mismatch, interstage gain, and ring 
amplifier (ringamp) bias optimality. The ADC also includes an 
on-chip wide-range, fully-dynamic reference regulation 
system. Consuming 3.3 mW at 500 MS/s, it achieves 10.0 
ENOB and 75.5 dB SFDR, yielding a Walden FoM of 6.2 fJ/c.s. 

Introduction 
Pipelined SAR ADCs reported in recent years that utilize a 

ringamp for residue amplification have helped to advance the 
state-of-the-art in power efficiency [1-3]. However, all of these 
implementations employ a calibration-free approach where 
PVT robustness is ensured through extra design margin, at the 
cost of speed. In this work we demonstrate with the 
architecture of Fig. 1 how ring amplification can be exploited 
to simultaneously achieve high bandwidth and power 
efficiency, by utilizing background calibration to ensure 
robustness and optimize performance. 

 
Fig. 1: ADC architecture.  

SAR Quantizer with Dither Injection Capability 
At the core of this work lies the quantizer shown in Fig. 2a. 

It is composed of a single preamplifier followed by “M” latches. 
Each separate latch is directly hardwired to a unique bit of the 
M-bit DAC. This lies topologically half-way between the 
traditional single-comparator [4] and loop-unrolled SAR 
paradigms [5]. It retains the benefits of the single-comparator 
topology in terms of reduced calibration complexity because 
the single shared preamplifier dominates the input-referred 
comparator offset due to random mismatch. It also inherits the 
benefits of the loop-unrolled topology by eliminating the 1-bit-
comparator-to-M-bit-control-register demux from the critical 
path. Instead, the latches themselves serve as the data capture 
register and directly drive the DAC. Moreover, it avoids the 
critical drawbacks of offset calibration complexity and large 
input capacitance found in the loop-unrolled scheme. 

Fig. 2b details the implementation of the proposed quantizer. 
It is based on a conventional 2-stage dynamic comparator [6]  
where the 2nd stage (i.e. latch) has been modified and replicated 
to support both the core monotonic-switching-based binary 
search and the injection of dither. The former is achieved with 
event-driven control logic, and the latter with programmable 
source-degeneration devices placed at the latch tail nodes that  
introduce intentional imbalances and can be set on a per-bit 
basis. This enables variable-amplitude, per-bit dither injection. 

 

 
Fig. 2: (a) Proposed quantizer and (b) its implementation. 

Narrowband-dither-based Background Calibration  
In this work, both interstage gain and Stage-1 DAC 

mismatch are background-calibrated with a band-limited dither 
that improves convergence speed by orders of magnitude w.r.t. 
traditional wideband dither techniques [7]. The scheme is 
illustrated in Fig. 3a. The dithering of the individual quantizer 
thresholds injects a small Stage-1 residue error. If the resulting 
error falls within the interstage redundancy range, these 
perturbations are cancelled in the digital domain when the 
reconstruction weights are accurate (i.e., wAi=wDi, GA=GD). If 
they are wrong, the ADC output will carry non-zero energy 
correlated to the injected dither, which can then be measured 
and minimized in the background by adjusting the digital 
weights (wDi, GD). To maximize sensitivity, dither is injected 
and extracted using narrow-band FIR filters (Fig. 3b) set to a 
frequency where spectral energy (signal power) is minimum. 

Ringamp bias optimization [8] can also be performed in the 
background by exploiting the proposed quantizer. To this 
purpose, 3-level dither (-1/0/+1) is injected and the total power 
of nonlinear components of the output residue is measured and 
used to tune biasing. The method, illustrated in Fig. 3c, is based 
on an analysis of the backend histograms that result for each 
applied dither value. With linear amplification, injecting dither 
only modifies the histogram with predictable signal folding and 
alignment effects. Nonlinear amplification reshapes the 
histogram further: distortion is larger close to the extremes of 
the residue range, excited more often for +1/-1 dither, and is 
less severe for 0 dither, which excites mostly the linear region. 
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Fig. 3: Narrowband-dither-based background calibration.  

 
Fig. 4: Charge-pump-based dynamic reference regulation. 

Practical implementation involves obtaining backend-code 
histograms for each dither level, aligning them taking folding 
effects into account, and computing a weighted difference to 
generate an estimate of ringamp nonlinearity that can be used 
to tune the ringamp bias DAC to an S(N)DR maximum. 

Fully-dynamic Reference Regulation 
The ADC includes an improved split-reference regulation 

scheme building on [9]. It is adapted for a pipeline-SAR 
architecture and buffers a reference VREFp with clean and dirty 
replicas. As shown in Fig. 4, an analog mux connects the SAR 
DAC node VREFp first to VREFp,dirty (at ΦQ+ΦA,slew) and then to 
VREFp,clean (at ΦA,settle). The charge of the attached reservoirs 
CBAT,i is dynamically replenished and exploits the contrasting 
charge-pull and precision requirements of the two replicas [9]. 
To pull a replica down, charge from CBAT,i is shared with CD. 
However, to pull a replica up, a charge pump is used instead. 
This allows for VREFp values up to and even beyond VDD, which 
was not possible in the previous implementation [9]. Moreover, 
VSS is exploited as the negative reference, reducing the overall 
regulator area and power (~3.5x w.r.t. [9]).  To compensate 
potential systematic common-mode (CM) offsets incurred 
when VREFp≠VDD, independent regulation of both VCM and the 
sampling CM reference VCMs is implemented. Since well-
balanced differential structures are resilient to CM noise, VCM 
and VCMs only require one dirty replica each, with very relaxed 
requirements (small CBAT sizes, down-sampled refresh rates). 

Measurement Results 
The ADC is fabricated in a 16nm CMOS technology (Fig. 

6) and operates entirely from a 0.9-V supply. All data 
reconstruction and processing for background calibration is 
performed off-chip and fed back through a serial interface. 

Interstage gain calibration measurements are summarized in 
Fig. 5a. The proposed algorithm converges >100x faster than a 
wideband dither approach, correcting an initial 5% gain error  
in ~300k cycles and tracking supply-induced gain variations. 
Fig. 5b shows the estimated nonlinearity objective function and 
measured SNDR vs. ringamp bias DAC code, including supply 
variations. This illustrates the ability to continuously optimize 
the ringamp biasing in the background w.r.t. PVT variation. 

Fig. 6 summarizes the measured ADC performance. At 500 
MS/s, it achieves 62.3 dB SNDR and 75.5 dB SFDR with a 
total power consumption of 3.3 mW, of which 2.8 mW are 
consumed by the core and 0.5 mW by the reference regulator. 
With FoMW and FoMS values of 6.2 fJ/c.-s. and 171.1 dB, 
respectively, this work achieves the highest power efficiency 
reported to date among all single-channel ADCs of any 
architecture operating above 200 MS/s. 
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Fig. 5: Background calibration measurements. 

 

Performance Summary 

Technology 16nm CMOS 

Supply 0.9 V 
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THD [dB] -71.7 -71.8 

Power [mW] 2.8 3.3 

FoMW [fJ/c.s.]  4.9 6.2 

FoMS [dB] 172.4 171.1 
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Fig. 6: Measured performance, summary, and chip photograph. 
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