
Binary Access Memory: 
An Optimized Lookup Table for Successive 

Approximation Applications

Benjamin Hershberg*, Skyler Weaver*, Seiji Takeuchi†, Koichi Hamashita†, Un-Ku Moon*

*School of Electrical Engineering and Computer Science, Oregon State University

†Asahi Kasei EMD Corporation, Atsugi, Japan



Presentation Overview

• Introduction & Motivation

• Binary Access Memory (BAM)

– Basic idea of BAM

– Global pre-fetching

– Local pre-charging

– Asynchronous BAM

• Conclusion



Introduction & Motivation



Typical SAR Error Correction

• Popular SAR error correction methods
– Radix calibration

– Trimming

– Lookup table (LUT)
• Outside the loop

• Inside the loop

Vin

DAC

SAR

m



Generalized SAR Error Correction

• Remaps each SAR code to some DAC code

• Payoff: enables new ways of implementing binary search

• Drawback: power, latency

Vin

DAC

SAR

Lookup

Table

(BAM)

n

m



Lookup Table Implementation

• RAM – Random Access Memory

– But, binary search is not a random access pattern!

• BAM – Binary Access Memory

– Exploit probabilistic aspects of binary search to reduce the 
latency and power requirements of the lookup table...



BAM memory organization



SRAM

8 words 8 words 8 words 8 words

8 words 8 words 8 words 8 words

8 words 8 words 8 words 8 words

8 words 8 words 8 words 8 words

COLUMN SELECT
R

O
W

 S
E

L
E

C
T

ADDR[6:0] A
D

D
R

[6
:5

]

A
D

D
R

[2
:0

]

A
D

D
R

[4
:3

]



Useful Properties of Binary Search

Property 1

• A binary search is a 
one-way journey 
down the search tree

SA begin

Step 1

Step 2

Step 3

Step 4
Step 5

Step 6
Step 7

Signal Level



Useful Properties of Binary Search

Property 1

• A binary search is a 
one-way journey 
down the search tree

SA begin

Step 1

Step 2

Step 3

Step 4
Step 5

Step 6
Step 7

Signal Level



Useful Properties of Binary Search

Property 1

• A binary search is a 
one-way journey 
down the search tree

SA begin

Step 1

Step 2

Step 3

Step 4
Step 5

Step 6
Step 7

Signal Level



How can we improve the organization 
of data words in the memory?

• SRAM: organizes data according to similarity in 
address code

• BAM: organizes data according to similarity in 
location within the search tree



Useful Properties of Binary Search

Property 2

• The probability that a node will be visited during a 
binary search is a non-uniform distribution.

SA begin

Step 1

Step 2

Step 3

Step 4
Step 5

Step 6
Step 7

0.25

1.00

0.5

0.5

0.25

0.25

0.25

0.125

0.125

0.125

0.125

0.125

0.125

0.125

0.125Most likely Least likely



How can we improve the organization 
of data words in the memory?

• Make the nodes with the highest probability of being 
visited the “easiest” to access.

• Minimize average energy/bit and average latency.



BAM memory organization

Level 1

Level 2 Level 3



Basic Operation – Step 1

1

0

0 1

Level 1 Level 2

1

0

1

Level 3

Step

1 1 0 0 0 0 0 0 Level 1

2

3

4 Level 2

5

6 Level 3

7

Memory Address

Level 1 Level 2 Level 3

1000000

1100000 1001110

1001101

1001000

1001100

1001010

1001011

1001001

1001111

1011100

1000100

1010000

1011000

1010100

1110000

0100000

0110000

0010000



Basic Operation – Step 2

1

0

0 1

Level 1 Level 2

1

0

1

Level 3

Step

1 1 0 0 0 0 0 0 Level 1

2 1 1 0 0 0 0 0

3

4 Level 2

5

6 Level 3

7

Memory Address

Level 1 Level 2 Level 3

1000000

1100000 1001110

1001101

1001000

1001100

1001010

1001011

1001001

1001111

1011100

1000100

1010000

1011000

1010100

1110000

0100000

0110000

0010000



Basic Operation – Step 3

1

0

0 1

Level 1 Level 2

1

0

1

Level 3

Step

1 1 0 0 0 0 0 0 Level 1

2 1 1 0 0 0 0 0

3 1 0 1 0 0 0 0

4 Level 2

5

6 Level 3

7

Memory Address

Level 1 Level 2 Level 3

1000000

1100000 1001110

1001101

1001000

1001100

1001010

1001011

1001001

1001111

1011100

1000100

1010000

1011000

1010100

1110000

0100000

0110000

0010000



Basic Operation – Step 4

1

0

0 1

Level 1 Level 2

1

0

1

Level 3

Step

1 1 0 0 0 0 0 0 Level 1

2 1 1 0 0 0 0 0

3 1 0 1 0 0 0 0

4 1 0 0 1 0 0 0 Level 2

5

6 Level 3

7

Memory Address

Level 1 Level 2 Level 3

1000000

1100000 1001110

1001101

1001000

1001100

1001010

1001011

1001001

1001111

1011100

1000100

1010000

1011000

1010100

1110000

0100000

0110000

0010000



Basic Operation – Final Result

1

0

0 1

Level 1 Level 2

1

0

1

Level 3

Step

1 1 0 0 0 0 0 0 Level 1

2 1 1 0 0 0 0 0

3 1 0 1 0 0 0 0

4 1 0 0 1 0 0 0 Level 2

5 1 0 0 1 1 0 0

6 1 0 0 1 1 1 0 Level 3

7 1 0 0 1 1 0 1

Memory Address

Level 1 Level 2 Level 3

1000000

1100000 1001110

1001101

1001000

1001100

1001010

1001011

1001001

1001111

1011100

1000100

1010000

1011000

1010100

1110000

0100000

0110000

0010000



Basic Operation – Decode

1

0

0 1

Level 1 Level 2

1

0

1

Level 3

Step

1 1 0 0 0 0 0 0 Level 1

2 1 1 0 0 0 0 0

3 1 0 1 0 0 0 0

4 1 0 0 1 0 0 0 Level 2

5 1 0 0 1 1 0 0

6 1 0 0 1 1 1 0 Level 3

7 1 0 0 1 1 0 1

Memory Address

Level 1 Level 2 Level 3

1000000

1100000 1001110

1001101

1001000

1001100

1001010

1001011

1001001

1001111

1011100

1000100

1010000

1011000

1010100

1110000

0100000

0110000

0010000

• Simple decoding options
• Level Select

– Determined by location of the 
‘walking 1’

• Block Select
– Use parent level’s address 

bits (either specific select 
lines from the parent level’s 
decoder or raw address bits 
will work)

• Block Decode
– Use own level’s address bits



Reduced Number of Block Switches

• In BAM, number of 
block switches per 
conversion always 
equals the number of 
levels

1

0

0 1

Level 1 Level 2

1

0

1

Level 3

Step

1 1 0 0 0 0 0 0 Level 1

2 1 1 0 0 0 0 0

3 1 0 1 0 0 0 0

4 1 0 0 1 0 0 0 Level 2

5 1 0 0 1 1 0 0

6 1 0 0 1 1 1 0 Level 3

7 1 0 0 1 1 0 1

Memory Address

Level 1 Level 2 Level 3

1000000

1100000 1001110

1001101

1001000

1001100

1001010

1001011

1001001

1001111

1011100

1000100

1010000

1011000

1010100

1110000

0100000

0110000

0010000

3-level Memory Depth 
and Organization

Average SRAM block 
switches

Average BAM block 
switches

7bit - 3x2x2 4.5 3

9bit – 3x3x3 5.5 3

12bit: 4x4x4 7.5 3

14bit: 4x4x6 8.5 3



Pre-fetching



Useful Properties of Binary Search

Property 3

• Only the two children nodes directly below the current node 
have a chance of being accessed on the next step.

• Reduce latency by pre-fetching both possible children nodes 
during the parent’s step

SA begin

Step 1

Step 2
Step 3

Step 4
Step 5

Step 6
Step 7

0.5

0.5



Pre-fetch Top Level Changes

• Reduce effective access latency

• Store both children words at the parent’s address

Vin

DAC

SAR

Lookup

Table

(BAM)

n

m-1

2n

n

n



Sub-Block Re-Structuring for Pre-Fetch

word

word

word

word

word

word

word
Decode 

3-to-8

LSB[2:0]

block select

ADDR[2:0]

enable

(111)

L
B

L

L
B

L

L
B

L

L
B

L

L
B

L

L
B

L

L
B

L

L
B

L

(110)

(101)

(011)

(010)

(001)

(000 or 100)

Level 1 Sub-Block (No Prefetch)



Sub-Block Re-Structuring for Pre-Fetch

double word

double word

double word

Decode 2-to-4

ADDR[1:0]

(11)

L
B

L

L
B

L

L
B

L

L
B

L

L
B

L

L
B

L

L
B

L

L
B

L

(10)

(01)

(00)
word(empty)

enable

Level 1 Sub-Block (Prefetch)



Pre-charging



Pre-Charging

• With pre-fetching implemented, there is now a word 
which is guaranteed to be the first accessed after a 
sub-block switch.

1

0

0 1

Level 1 Level 2

1

0

1

Level 3

(empty)

0
0

0
0

0
0

1
0

0
0

0
0

1
1

0
0

0
0

0
1

0
0

0
0

1
0

1
0

0
0

Step

(7) 0 0 0 0 0 0 Level 1

1 1 0 0 0 0 0

2 1 1 0 0 0 0

3 1 0 1 0 0 0 Level 2

4 1 0 0 1 0 0

5 1 0 0 1 1 0 Level 3

6 1 0 0 1 1 1

7 0 0 0 0 0 0

Memory Address

Level 1 Level 2 Level 3

1
0

1
1

0
0

1
0

0
1

0
0 1

0
0

1
1

0

1
0

0
1

1
1

1
0

0
1

0
1



Pre-Charging

• Worst-case latency occurs when switching to a new 
sub-block

– In some designs, output glitching can also occur

– Solution: pre-charging

• When not selected, a sub-block’s ‘off state’ is to pre-
charges its local bit lines to the double-word which 
will always be requested first

Buffer data to 

system output

Block 

Switch

Acquire Data at 

local block output

Inner block 

decode



Pre-Charging

• Worst-case latency occurs when switching to a new 
sub-block

– In some designs, output glitching can also occur

– Solution: pre-charging

• When not selected, a sub-block’s ‘off state’ is to pre-
charges its local bit lines to the double-word which 
will always be requested first

Buffer data to 

system output

Block 

Switch

Acquire Data at 

local block output

Inner block 

decode



Pre-Charging

• Worst-case latency occurs when switching to a new 
sub-block

– In some designs, output glitching can also occur

– Solution: pre-charging

• When not selected, a sub-block’s ‘off state’ is to pre-
charges its local bit lines to the double-word which 
will always be requested first

Buffer data to 

system output

Block 

Switch



Asynchronous BAM



Useful Properties of Binary Search

Property 4

• There is only one step number which a node can be 
visited during, and this step number is known for all 
nodes. 

SA begin

Step 1

Step 2

Step 3

Step 4
Step 5

Step 6
Step 7

When STEP = 2, P(is current node) = 2-(STEP-1)

When STEP != 2, P(is current node) = 0

• Use this knowledge to generate 
an asynchronous DONE signal



Asynchronous BAM

Step 1

Step 2

Step 3

Step 4
Step 5

Step 6
Step 7

Step DONE bit value

1 0

2 1

3 0

4 1

5 0

6 1

7 0

Steps where words 
store a ‘0’ DONE bit:



Asynchronous BAM

Step 1

Step 2

Step 3

Step 4
Step 5

Step 6
Step 7

Step DONE bit value

1 0

2 1

3 0

4 1

5 0

6 1

7 0

Steps where words 
store a ‘1’ DONE bit:



Asynchronous BAM

double word

double word

double word

Decode 2-to-4

ADDR[1:0]

(11)

L
B

L

L
B

L

L
B

L

L
B

L

L
B

L

L
B

L

L
B

L

L
B

L

(10)

(01)

(00)
word(empty)

enable

Level 1 Sub-Block (Prefetch)

0

0

1

0

L
B

L

DONE bits

Step 2

Step 1

Step 3



Asynchronous BAM

• BAM access latency depends on where you are in the 
conversion

– Early steps have low latency due to tree structuring.

• Fast early steps, slower later steps

– Asynchronous BAM

– Compatible with incomplete-settling, metastability-
reduction, and other well known SAR techniques



Conclusion



Conclusion

• Binary Access Memory (BAM)
– Improve performance (speed, power) by 

customizing lookup table for binary search tree 
memory access patterns

– Key concepts
• Blocks organized by location in tree rather than code

• Most frequently accessed blocks are easiest to access

• Prefetch the two possible ‘next’ codes in advance

• Precharge bit-lines for fast access on block switch steps

• Encode a DONE clock bit for asynchronous operation



Binary Access Memory: 
An Optimized Lookup Table for Successive 

Approximation Applications

Benjamin Hershberg*, Skyler Weaver*, Seiji Takeuchi†, Koichi Hamashita†, Un-Ku Moon*

*School of Electrical Engineering and Computer Science, Oregon State University

†Asahi Kasei EMD Corporation, Atsugi, Japan


