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Presentation Overview

• Introduction & Motivation

• Binary Access Memory (BAM)

– Basic idea of BAM

– Global pre-fetching

– Local pre-charging

– Asynchronous BAM

• Conclusion



Introduction & Motivation



Typical SAR Error Correction

• Popular SAR error correction methods
– Radix calibration

– Trimming

– Lookup table (LUT)
• Outside the loop

• Inside the loop
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Generalized SAR Error Correction

• Remaps each SAR code to some DAC code

• Payoff: enables new ways of implementing binary search

• Drawback: power, latency
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Lookup Table Implementation

• RAM – Random Access Memory

– But, binary search is not a random access pattern!

• BAM – Binary Access Memory

– Exploit probabilistic aspects of binary search to reduce the 
latency and power requirements of the lookup table...



BAM memory organization
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Useful Properties of Binary Search

Property 1

• A binary search is a 
one-way journey 
down the search tree
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How can we improve the organization 
of data words in the memory?

• SRAM: organizes data according to similarity in 
address code

• BAM: organizes data according to similarity in 
location within the search tree



Useful Properties of Binary Search

Property 2

• The probability that a node will be visited during a 
binary search is a non-uniform distribution.
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How can we improve the organization 
of data words in the memory?

• Make the nodes with the highest probability of being 
visited the “easiest” to access.

• Minimize average energy/bit and average latency.



BAM memory organization
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Basic Operation – Step 1
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Basic Operation – Step 2
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Basic Operation – Step 3
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Basic Operation – Step 4
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Basic Operation – Final Result
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Basic Operation – Decode
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• Simple decoding options
• Level Select

– Determined by location of the 
‘walking 1’

• Block Select
– Use parent level’s address 

bits (either specific select 
lines from the parent level’s 
decoder or raw address bits 
will work)

• Block Decode
– Use own level’s address bits



Reduced Number of Block Switches

• In BAM, number of 
block switches per 
conversion always 
equals the number of 
levels
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3-level Memory Depth 
and Organization

Average SRAM block 
switches

Average BAM block 
switches

7bit - 3x2x2 4.5 3

9bit – 3x3x3 5.5 3

12bit: 4x4x4 7.5 3

14bit: 4x4x6 8.5 3



Pre-fetching



Useful Properties of Binary Search

Property 3

• Only the two children nodes directly below the current node 
have a chance of being accessed on the next step.

• Reduce latency by pre-fetching both possible children nodes 
during the parent’s step
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Pre-fetch Top Level Changes

• Reduce effective access latency

• Store both children words at the parent’s address
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Sub-Block Re-Structuring for Pre-Fetch
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Sub-Block Re-Structuring for Pre-Fetch

double word
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Pre-charging



Pre-Charging

• With pre-fetching implemented, there is now a word 
which is guaranteed to be the first accessed after a 
sub-block switch.
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Pre-Charging

• Worst-case latency occurs when switching to a new 
sub-block

– In some designs, output glitching can also occur

– Solution: pre-charging

• When not selected, a sub-block’s ‘off state’ is to pre-
charges its local bit lines to the double-word which 
will always be requested first
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Asynchronous BAM



Useful Properties of Binary Search

Property 4

• There is only one step number which a node can be 
visited during, and this step number is known for all 
nodes. 
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When STEP != 2, P(is current node) = 0

• Use this knowledge to generate 
an asynchronous DONE signal



Asynchronous BAM
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Asynchronous BAM
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Asynchronous BAM
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Asynchronous BAM

• BAM access latency depends on where you are in the 
conversion

– Early steps have low latency due to tree structuring.

• Fast early steps, slower later steps

– Asynchronous BAM

– Compatible with incomplete-settling, metastability-
reduction, and other well known SAR techniques



Conclusion



Conclusion

• Binary Access Memory (BAM)
– Improve performance (speed, power) by 

customizing lookup table for binary search tree 
memory access patterns

– Key concepts
• Blocks organized by location in tree rather than code

• Most frequently accessed blocks are easiest to access

• Prefetch the two possible ‘next’ codes in advance

• Precharge bit-lines for fast access on block switch steps

• Encode a DONE clock bit for asynchronous operation
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