Ring Amplifiers for Switched Capacitor Circuits

Benjamin Hershberg¹, Skyler Weaver¹, Kazuki Sobue², Seiji Takeuchi², Koichi Hamashita², Un-Ku Moon¹

¹Oregon State University, Corvallis, OR, USA ²Asahi Kasei Microdevices, Atsugi, Japan

A/D Scaling Trends: FoM₁

- Performance continues to scale well with process
- FoM₁ best describes low/medium-resolution A/D performance

[Jonsson, NORCHIP 2010]

A/D Scaling Trends: FoM₂

- FoM₂ best describes high-resolution A/D performance
- Noise floor degrades faster than power/speed improves.

[Jonsson, NORCHIP 2010]

We need amplifiers that are:

- Immune to SNR loss from low-voltage, degrading r_o
- Exploit digital scaling benefits
- Avoid conventional RC-based settling

Beating the Trend

Ring Amplifier (Ring Amp, RAMP)

Ring Amplification

Basic Theory

Ring Amplifier: Basic Theory

Basic MDAC test structure

Ring Amplifier: Basic Theory

- Ring Oscillator
- Unstable...

...but will oscillate around the correct settled value

Ring Oscillator Sample Waveform

Ring Amplifier: Basic Theory

- Split signal into two separate paths
- Embed offset in each path

V_{OV} Dynamic Pinch-off

V_{OV} Dynamic Pinch-off

- Dominant pole \rightarrow DC

Ring Amplifier Core Benefits

Slew-based charging

- Charges with maximally biased, digitally-switched current sources
 - V_{OV} = V_{DD}
 - Can be very small, even for large C_{LOAD}
 - Decouples internal speed vs. output load requirements

Exponential dynamic stabilization

- Very fast
- Well defined tradeoffs

Ring Amplifier Core Benefits

Scalability (Speed/Power)

- Internal speed/power (mostly) independent of C_{LOAD}
 - Inverter t_d, crowbar current, parasitic C's
 - Digital power-delay product scaling benefits apply
- Power/speed product scales with digital process trends

Ring Amplifier Core Benefits

Scalability (Output Swing / SNR)

- Compression immune: rail-to-rail output swing
 - 50dB: Input-referred dead-zone size will limit accuracy
 - 90dB: dynamic pinch-off effects maintain high accuracy
 - V_{OV} pinchoff: decreases V_{DSAT}, decreses I_D, increases r_o

ADC Implementation Details

• Split-CLS

- Generalized form of Correlated Level Shifting (CLS)

[Hershberg, ISSCC 2010]

Φ₁:

- amp charges output directly
- processes full signal

Amplifier Design Requirements

	Φ ₁	Φ ₂
Output Swing	Large	Small
Slew Rate	Large	Small

Φ₂:

- opamp is level-shifted to mid-rail
- processes error only

Amplifier Design Requirements

	Φ ₁	Φ ₂
Output Swing	Large	Small
Slew Rate	Large	Small

- Optimized design for each phase
 - Increase overall accuracy & efficiency
- This design:
 - Φ_1 : Ring Amp
 - $-\Phi_2$: Telescopic opamp
- Finite opamp gain error becomes approx. $1 / (A_1 * A_2)$

55dB ring amp

- + 65dB opamp
 - 120dB effective gain

Pipelined ADC Overview

Pipelined ADC Stage 1 MDAC

Pipelined ADC Stage 2-4 MDAC

Pipelined ADC Stage 5-6 MDAC

Ring Amplifier Core Structure

- No need to refresh every cycle.
- Can disable ring amp when not in use

Ring Amplifier Power Save Feature

- Only enable when amplifying or refreshing
- Refresh only once every N cycles (during Φ_S)

Ring Amplifier CMFB

Float-Biased Switched Opamp

Float-Biased Switched Opamp

Float-Biased Switched Opamp

Measurement Results

Input Spectrum

Performance vs. Input Frequency

SNDR vs. Input Amplitude

Ring Amp Dead-Zone Sensitivity

Ring Amp Supply Sensitivity

Opamp Float-Bias Switching

• Reduces total opamp power by 35%:

1769uA → 1151uA

• Bias network isolation improves accuracy by 0.6dB:

76.2dB → 76.8dB

Performance Summary

Technology	0.18µm 1P4M CMOS
Resolution	15 bits
Analog Supply	1.3 V
Sampling rate	20 Msps
ERBW	10 MHz
Input Range	2.5 V pk-pk diff.
SNDR	76.8 dB
SNR	77.2 dB
SFDR	95.4 dB
ENOB	12.5 bits
Total Power	5.1 mW
FoM	45 fJ/c-step

(nyquist or oversampling)

[B. Murmann, 2011]

Conclusion

- Ring Amplification
 - High efficiency slew-based charging
 - Rail-to-rail output swing
 - Performance scales with digital process
- Split-CLS
 - Efficient coarse charging
 - Very accurate fine settling
 - High-efficiency, high accuracy amplification

Thank you for your attention

Additional Slides

Possibly useful in Q&A afterwards

Systematic dead-zone offset

1st Stage Deadzone vs SNDR

Ring Amp Accuracy

- Determined using 2 independent test approaches
- Ring Amps contribute ~55dB to overall accuracy

Test method 1: Increase f_s until opamps don't have enough time to turn on.

Peak SNDR vs. Sampling

Frequency

Test method 2: Power down opamps, and adjust the time the ring amps are allowed to settle.

> SNDR vs. Ring Amp Timing (with opamps off)

Input-cap clearing

• FFT spectrum when the input capacitors aren't cleared before being re-connected to the chip signal input:

More about Compression Immunity

- Isn't this just a 90dB amplifier that's been limited by the dead-zone size to look like a 60dB amplifier?
 - Answer: No!
- With a well chosen dead-zone value:
 - Current pinches off, increasing r_o
 - $V_{\rm OV}$ shrinks, decreasing $V_{\rm DSAT}$
 - High gain preserved, even when V_{DS} is very small
- Depends on dead-zone value?
 - Yes, but doesn't actually matter...
 - Small dead-zone: compression immune
 - Large dead-zone: some compression (lower accuracy anyway)

Power Breakdown

DNL - INL

Supply current vs. Stage 1 DZ

A/D Scaling Trends: FoM₂

- FoM₂ best describes high-resolution A/D performance
- Noise floor degrades faster than power/speed improves.

[Jonsson, NORCHIP 2010]

Chip Micrograph

Full die micrograph

Stage 1 MDAC

Ring Amp Power-Save Feature

