A 61.5dB SNDR Pipelined ADC Using Simple Highly-Scalable Ring Amplifiers

Benjamin Hershberg¹, Skyler Weaver¹, Kazuki Sobue², Seiji Takeuchi², Koichi Hamashita², Un-Ku Moon¹

¹Oregon State University, Corvallis, OR, USA ²Asahi Kasei Microdevices, Atsugi, Japan

An Incomplete Solution

- Goal: develop truly scalable amplifiers
 - Conventional opamps are fundamentally ill-suited for nanoscale CMOS
 - Efficiency in amplification-based designs is actually getting worse
- ADCs
 - Amplifier-less ADCs (i.e. SARs) provide excellent scalability for some of the design space
 - Scalable amplifiers are needed to cover the *entire* ADC design space
- The more scalable options we have, the better

A scalable amplifier must

- Operate well *in* nanoscale CMOS
- Improve with nanoscale CMOS

Circuit level requirements

- Minimize SNR loss from low-voltage, degrading r_o
- Exploit digital scaling benefits
- Avoid conventional RC-based settling

Beating the Trend

Ring Amplifier (Ringamp, RAMP)

Ring Amplification

Basic Theory

Ring Amplifier: Basic Theory

Basic MDAC test structure

Ring Amplifier: Basic Theory

- Ring Oscillator
- Unstable...

...but will oscillate around the correct settled value

Ring Oscillator Sample Waveform

Ring Amplifier: Basic Theory

- Split signal into two separate paths
- Embed offset in each path

V_{OV} Dynamic Pinch-off

V_{OV} Dynamic Pinch-off

- Dominant pole \rightarrow DC

Dynamic Dead-zone Adjustment

- Initial: A_{V1} limited by slewing
- Final: A_{V1} set by AC small-signal
- Dynamically adjusts input-referred dead-zone
- Enhances Speed / Accuracy trade-off

Core Benefits

Ring Amplifier Core Benefits

Slew-based charging

- Charges with maximally biased, digitally-switched current sources
 - Can be very small, even for large C_{LOAD}
 - Decouples internal speed vs. output load requirements

Ring Amplifier Core Benefits

Scalability (Speed/Power)

- Internal speed/power (mostly) independent of C_{LOAD}
 - Inverter t_d, crowbar current, parasitic C's
 - Digital power-delay product scaling benefits apply
- Captures the same power/speed trends as digital circuits

Ring Amplifier Core Benefits

Scalability (Output Swing / SNR)

- Compression immune: rail-to-rail output swing
- 50dB: Input-referred dead-zone size will limit accuracy
- 90dB: dynamic pinch-off effects maintain high accuracy
 - weak inversion
 - saturation even for small V_{DS}
 - gain-boosting from increased r_o

Noise Suppression

- Output pinch-off reduces I_D, g_m
 - Internal noise sources attenuated
- Initial charging noisy \rightarrow final settling quiet

Noise Suppression

- Output pinch-off reduces I_D, g_m
 - Internal noise sources attenuated
- Initial charging noisy \rightarrow final settling quiet

ADC Implementation Details

Structure Overview

- 10.5b Pipelined ADC
 - 9 identical 1.5b MDAC stages
 - 1.5b Flash
- Simple proof-of-concept built to characterize:
 - Basic functionality
 - Rail-to-rail output swing
 - Noise immunity

Ring amplifier

• Very small, very simple, uses minimum size inverters

Float-sampled MDAC

- Differential gain: 2X
- Common-mode gain: 1X

Measurement Results

- Limited by quantization noise
- Inherent noise advantage demonstrated

Rail-to-Rail Output Swing Test

Rail-to-rail output swing test

Ring Amp Dead-Zone Sensitivity

Performance Summary

Technology	0.18µm 1P4M CMOS
Resolution	10.5 bits
Analog Supply	1.3 V
Sampling rate	30 Msps
ERBW	15 MHz
Input Range	2.2 V pk-pk diff.
SNDR	61.5 dB
SNR	61.9 dB
SFDR	74.2 dB
ENOB	9.9 bits
Total Power	2.6 mW
FoM	90 fJ/c-step

Room for improvement

- Design meant to probe THD, SNR limits of minimum sized ringamp
 - Speed set intentionally low
 - No optimization, stage scaling
 - Ringamps left 'on' during sampling phase
 - FoM can easily be improved
- ISSCC 2012 implementation**
 - Speed: 90Msps
 - Power save features: 50% reduction in power

** B. Hershberg, et al. "Ring Amplifiers for Switched Capacitor Circuits", ISSCC 2012

- Design Challenge:
 - MDAC for 11b pipelined ADC with 10b ENOB
 - 130nm, 90nm, 65nm, 45nm, 32nm

V _{DD}	process defined
SNDR	> 66dB (input referred)
Output Swing	0.8V _{DD}
Total Load	800fF
Speed	proportional to 1/L _{min}
Power	Minimize

ASU predictive technology models [ptm.asu.edu]

Test Ringamp

Pesudo-differential Test MDAC

Conclusion

- Ring Amplification
 - High efficiency slew-based charging
 - Rail-to-rail output swing
 - Noise advantage
 - Performance scales with digital process
- Key Concepts
 - Dead-zone
 - V_{OV} pinch-off
 - Dynamic gain adjustment

Thank you for your attention

Additional Slides

Possibly useful in Q&A afterwards

Performance vs. Input Frequency

SNDR vs. Input Amplitude

SNDR vs Input Amplitude

SNDR vs. Sampling Frequency

SNDR vs Sampling Frequency

INL / DNL

SNDR vs. Sampling Frequency

SNDR vs Sampling Frequency

Rail-to-Rail Output Swing

Ring Amp Supply Sensitivity

Supply Current vs. Dead-zone

