A 9.1-12.7 GHz VCO in 28nm CMOS with a Bottom-Pinning Bias Technique for Digital Varactor Stress Reduction

> Benjamin Hershberg, Kuba Raczkowski, Kristof Vaesen, Jan Craninckx

> > imec Leuven, Belgium

2014 EUROPEAN SOLID STATE CIRCUITS CONFERENCE (ESSCIRC 2014)

IN THIS TALK

- Design challenges of VCOs in nanoscale CMOS
- A new digital varactor cell
- Class B wide tuning range VCO in 28nm

Class-BVCO

New digital varactor cell

2014 EUROPEAN SOLID STATE CIRCUITS CONFERENCE (ESSCIRC 2014)

A POPULAR ARCHITECTURE

- Wide tuning range class-BVCO
 - Broad tuning for software defined radio
 - R_{TAIL}: power/noise optimization
- Coarse digital cap bank
 - Switched capacitor cells
 - Controlled by Frequency Synthesizer
- Fine analog cap cell
 - Accumulation mode varactor
 - Controlled directly by V_{TUNE} of PLL

Andreani, JSSC, July 2011

CONVENTIONAL CAP CELL

2014 EUROPEAN SOLID STATE CIRCUITS CONFERENCE (ESSCIRC 2014)

CONVENTIONAL CAP CELL

2014 EUROPEAN SOLID STATE CIRCUITS CONFERENCE (ESSCIRC 2014)

CONVENTIONAL CAP CELL

2014 EUROPEAN SOLID STATE CIRCUITS CONFERENCE (ESSCIRC 2014)

ADVANTAGES OF NANOSCALE

- R_{ON}/C_{OFF} switch scaling advantage
 - Wider tuning range of VCO
 - Better capacitor on-state Q

STRESS IN NANOSCALE

Voltage stress above native V_{DD} with thin oxide?

- ON state: no problem!
- OFF state: possible (with limits)

Impact ionization!! Gate oxide breakdown Drain-source punch-through

Some amount of gate oxide stress is OK

2014 EUROPEAN SOLID STATE CIRCUITS CONFERENCE (ESSCIRC 2014)

JUNCTION DIODES IN 28NM

- Intrinsic transistor junction diodes
- Reverse-bias current begins at ~1.4V
 - Depends on doping flavor (ulvt, lvt, stdvt, hvt, ...)
- Degrades off-state Q

2014 EUROPEAN SOLID STATE CIRCUITS CONFERENCE (ESSCIRC 2014)

JUNCTION DIODES IN 28NM

- Diode leakage causes common-mode droop
- Common-mode droop can turn on M_{SW}!

2014 EUROPEAN SOLID STATE CIRCUITS CONFERENCE (ESSCIRC 2014)

DESIRED PROPERTIES

Minimize oxide stress

Minimize diode leakage

Minimize peak voltage (upper constraint)

SLIDF I

 Q gracefully degrades in the presence of diode leakage

> Never drop below min voltage (lower constraint)

2014 EUROPEAN SOLID STATE CIRCUITS CONFERENCE (ESSCIRC 2014)

THE OPTIMAL SOLUTION

Transient VCO waveform (seen at V_A or V_B in off-state)

- Old:Average-value referenced
- New: Min-value referenced
- "Bottom Pinning"

2014 EUROPEAN SOLID STATE CIRCUITS CONFERENCE (ESSCIRC 2014)

PROPOSED CELL

2014 EUROPEAN SOLID STATE CIRCUITS CONFERENCE (ESSCIRC 2014)

PRINCIPLE OF OPERATION

2014 EUROPEAN SOLID STATE CIRCUITS CONFERENCE (ESSCIRC 2014)

OPTIMAL OFF-STATE Q

2014 EUROPEAN SOLID STATE CIRCUITS CONFERENCE (ESSCIRC 2014)

UNIT CELL LAYOUT

Layout floorplan

SIMPLE BIASING OPTION

 $I_{LEAK} < I_{BIAS} \rightarrow V_A, V_B > 0V$

2014 EUROPEAN SOLID STATE CIRCUITS CONFERENCE (ESSCIRC 2014)

MEASURED RESULTS

2014 EUROPEAN SOLID STATE CIRCUITS CONFERENCE (ESSCIRC 2014)

SUMMARY OF PERFORMANCE

2014 EUROPEAN SOLID STATE CIRCUITS CONFERENCE (ESSCIRC 2014)

COMPARISON WITH SOTA

	Area (mm²)	Frequency (GHz)	PN @ 20MHz from 915MHz (dBc/Hz)	P _{DC} (mW)	FoM (dBc/Hz)
Fanori, ISSCC 2012	0.39 (55nm)	6.7-9.2 (32%)	-169	27	188/189
Liscidini, ISSCC 2012	0.49 (55nm)	6.5-9.0 (33%)	-168	36	185
Visweswaran, ISSCC 2012	0.19 (65nm)	7.3-8.0 (10%)	-170	25.8	190
Dal, JSSC 2010	0.06 (65nm)	13-15 (15%)	-162	8.4	185
This work	0.13 (28nm)	9.1 – 12.7 (32%)	-163	9.5	187

State of the art cellular TX VCOs with f_{max} > 6GHz

2014 EUROPEAN SOLID STATE CIRCUITS CONFERENCE (ESSCIRC 2014)

PHASE NOISE

- Due to high I/f corner (700kHz in sim)
- Large variance in 1/f noise not included in model

OPERATION ACROSS FREQUENCY

2014 EUROPEAN SOLID STATE CIRCUITS CONFERENCE (ESSCIRC 2014)

POWER EFFICIENCY

2014 EUROPEAN SOLID STATE CIRCUITS CONFERENCE (ESSCIRC 2014)

CONCLUSION

- Minimal voltage stress and diode leakage
- Optimal off-state Q
- Compact NMOS-only layout

THANKYOU FORYOUR ATTENTION

2014 EUROPEAN SOLID STATE CIRCUITS CONFERENCE (ESSCIRC 2014)

ADDITIONAL MATERIAL

2014 EUROPEAN SOLID STATE CIRCUITS CONFERENCE (ESSCIRC 2014)

"PINNING" CAPACITOR CELL

Conventional

2014 EUROPEAN SOLID STATE CIRCUITS CONFERENCE (ESSCIRC 2014)

INTENTIONAL LEAKAGE PATH

2014 EUROPEAN SOLID STATE CIRCUITS CONFERENCE (ESSCIRC 2014)

OUTPUT BUFFER

2014 EUROPEAN SOLID STATE CIRCUITS CONFERENCE (ESSCIRC 2014)

DIGITAL FREQUENCY TUNING

2014 EUROPEAN SOLID STATE CIRCUITS CONFERENCE (ESSCIRC 2014)

ANALOG FREQUENCY TUNING

2014 EUROPEAN SOLID STATE CIRCUITS CONFERENCE (ESSCIRC 2014)

ANALOG FREQUENCY TUNING

2014 EUROPEAN SOLID STATE CIRCUITS CONFERENCE (ESSCIRC 2014)

PHASE NOISE

PHASE NOISE

DIODE LEAKAGE COMPARISON

- 2 flavors compared
 - Ultra-low V_T
 - Low V_T

2014 EUROPEAN SOLID STATE CIRCUITS CONFERENCE (ESSCIRC 2014)

REVERSE-BIAS LEAKAGE TEST

2014 EUROPEAN SOLID STATE CIRCUITS CONFERENCE (ESSCIRC 2014)