A Dual-Frequency 0.7-to-1GHz Balance Network for Electrical Balance Duplexers

Benjamin Hershberg¹, Barend van Liempd^{1,2}, Xiaoqiang Zhang¹, Piet Wambacq^{1,2}, Jan Craninckx¹

¹imec, Heverlee, Belgium ²Vrije Universiteit Brussel, Brussels, Belgium

Motivation

Mobile RF frontends use SAW filters and RF switches to support FDD

- iphone 6s
 - 19 FDD-LTE bands
 - 0.7 2.4 GHz
- Cost
- Area
- Performance

Background: Electrical Balance Duplexer

Background: Electrical Balance Duplexer

Background: Electrical Balance Duplexer

© 2016 IEEE

Key Challenge

The antenna impedance is

Frequency dependent

Time dependent

Z_{BAL} must track these variations at both f_{TX} and f_{RX}

Tuning Spec: region_{TX}

Impedance-variation coverage region of Z_{BAL} at f_{TX}

Antenna tuner can reduce the required size

Tuning Spec: region_{TX}

Tuning Spec: region_{RX}

Tuning Spec: region_{RX}

Tuning Specs: region_{TX} & region_{RX}

The balance network can synthesize **all** impedances in region_{TX} at f_{TX} ...

...and *simultaneously* generate **any** impedance in region_{RX} at f_{RX} .

Dual-Frequency Tuning Concept

High-level perspective

Dual-frequency tuning concept

Core idea: Make certain tuning knobs only influence Z_{BAL} at f_1 and not at f_2

Dual-frequency tuning concept

Core idea: Make certain tuning knobs only influence Z_{BAL} at f_1 and not at f_2

© 2016 IEEE International Solid-State Circuits Conference

Dual-frequency tuning concept

© 2016 IEEE International Solid-State Circuits Conference

Circuit Implementation

Practical application of theory

Circuit Implementation

- Distributed implementation of conceptual blocks
 - Efficient, flexible approach
- Uses only high-Q reactive elements
 - Maximizes frequency dependency
 - Must still synthesize impedances in vicinity of 50Ω

Guaranteed low-pass filtering

- Stages 1-5 resonance always > 1GHz.
 Guarantees low-pass characteristic in-band
- Stages 6-9 resonance can be < 1GHz
 Needed to fully cover all parts of region_{RX}

20.8: A Dual-Frequency 0.7-to-1GHz Balance Network for Electrical Balance Duplexers

Accumulated filtering across stages

20.8: A Dual-Frequency 0.7-to-1GHz Balance Network for Electrical Balance Duplexers

Tunable capacitors

- Digitally controlled banks
- 6 stacked SOI switches for power handling
- Additional drain-source capacitors for improved offstate voltage equalization

Custom Simulation Engine

- What are the optimal component values?
- How do we validate for region_{TX}, region_{RX}?

Custom Simulation Engine

- Brute-force design and validation
- Typical design iteration
 - 50 million balance network settings
 - < 2 minutes</p>
- Final validation
 - 100 billion balance network settings
 - approx. 2 days

Measurement Results

Chip Photo

8.28 mm² (3.6 mm x 2.3 mm)

20.8: A Dual-Frequency 0.7-to-1GHz Balance Network for Electrical Balance Duplexers

Measured Tuning Capability

Technology	0.18µm RF SOI CMOS
Chip Area	8.28mm² (3.6mm x 2.3mm)
Operating Range	0.7 GHz – 1.0 GHz
Region _{TX}	1.1:1 VSWR, 54+j5Ω
Region _{RX}	1.2%/MHz (w.r.t. 800MHz)
LTE Bands Validated	5, 6, 8, 12, 13, 14, 17, 18, 19, 20

Single Frequency Tuning Range

 Z_{BAL} range at 900 MHz

+j1.0

© 2016 IEEE International Solid-State Circuits Conference

20.8: A Dual-Frequency 0.7-to-1GHz Balance Network for Electrical Balance Duplexers

region_{RX} for $Z_{BAL}(f_{TX}) = Z_{0TX}$

© 2016 IEEE International Solid-State Circuits Conference

20.8: A Dual-Frequency 0.7-to-1GHz Balance Network for Electrical Balance Duplexers

region_{RX} for $Z_{BAL}(f_{TX}) = Z_{0TX}$

Tuning Algorithm in Matlab

Tuning Efficiency Histogram

Conclusion

- First generic dual-frequency balance network
- Z_{ANT}/Z_{BAL} co-design specifications

 Region_{TX}, Region_{RX}
- Efficient tuning algorithm demonstrated for search space of 2 x 10³⁰

