A 3.2GS/s 10 ENOB 61mW Ringamp ADC in 16nm with Background Monitoring of Distortion

Benjamin Hershberg, Davide Dermit, Barend van Liempd, Ewout Martens, Nereo Markulic, Jorge Lagos, Jan Craninckx

imec, Leuven, Belgium

3.1: A 3.2GS/s 10 ENOB 61mW Ringamp ADC in 16nm with Background Monitoring of Distortion

GIGA-SAMPLE ADCS MOTIVATION

- High performance giga-sample ADCs
 - >9 ENOB, >70 dB SFDR, >2GS/s
 - E.g. direct-RF sampling
- Architectures use residue-amplification
 - Minimizes # of interleaved channels
 - High bandwidth amplifiers severely limit power efficiency
 - Design freedom reduced as a consequence

GIGA-SAMPLE ADCS MOTIVATION

- High performance giga-sample ADCs
 - >9 ENOB, >70 dB SFDR, >2GS/s
 - E.g. direct-RF sampling
- Architectures use residue-amplification
 - Minimizes # of interleaved channels
 - High bandwidth amplifiers severely limit power efficiency
 - Design freedom reduced as a consequence
- Next generation amplification solutions are needed

IN THIS TALK PREVIEW

- A 3.2GS/s direct-RF sampling ADC in 16nm
 - Uses 36 ring amplifiers
 - Advances SoTA by an order of magnitude
- Technique for background measurement of Signal-to-Distortion ratio
 - Applicable to any switched capacitor feedback circuit
 - Used here to tune biasing of ringamps w.r.t. PVT

TOP LEVEL

- SYSTEM OVERVIEW
- 3.2GS/s
 - 4 channels @ 800 MS/s

INPUT BUFFER

SYSTEM OVERVIEW

- Pseudo-differential class-AB push-pull source follower
- AC-coupled input
- 1.8V supply centered around V_{CM}

CHANNEL

SYSTEM OVERVIEW

- 9 x 1.5b/stage
- 1.5b + 3b backend flash stage

- Conventionally, there are 2 sampling networks
 - MDAC
 - sub-ADC

Conventional MDAC + sub-ADC

- Conventionally, there are 2 sampling networks
 - MDAC
 - sub-ADC

Conventional MDAC + sub-ADC

- Conventionally, there are 2 sampling networks
 - MDAC
 - sub-ADC

Conventional MDAC + sub-ADC

- Conventionally, there are 2 sampling networks
 - MDAC
 - sub-ADC
- HERE: Single sampling path

Stage 1 MDAC with Passive-Hold

Track

- Track
- Passive hold

Track

- Track
- Passive hold

- Track
- Passive hold

- Track
- Passive hold
 - Quantize

Track

Phase 1: Track

Track

Quantize (Passive hold)

Phase 2: Quantize (Passive Hold)

Track

Quantize (Passive hold)

Amplify

Phase 3: Amplify

- BENEFIT: Same capacitors used by sub-ADC and amplifier
 - No skew/bandwidth mismatch
 - No sub-ADC loading of input buffer

Phase 2: Quantize (Passive Hold)

- BENEFIT: Same capacitors used by sub-ADC and amplifier
 - No skew/bandwidth mismatch
 - No sub-ADC loading of input buffer
- But: sub-ADC input capacitance must be minimized!

Phase 2: Quantize (Passive Hold)

SPLIT-SOURCE COMPARATOR

SYSTEM OVERVIEW

- New "source-shifted" comparator architecture
 - Tiny input capacitance
 - Built-in threshold with wide tuning range
 - Very small decision delay
- Used in *all* sub-ADCs

SPLIT-SOURCE COMPARATOR

SYSTEM OVERVIEW

- New "source-shifted" comparator architecture
 - Tiny input capacitance
 - Built-in threshold with wide tuning range
 - Very small decision delay
- Used in *all* sub-ADCs

E. Martens et al., "Wide-tuning range programmable threshold comparator using capacitive source-voltage shifting", Electronics Letters, Dec, 2018

3.1: A 3.2GS/s 10 ENOB 61mW Ringamp ADC in 16nm with Background Monitoring of Distortion

SYSTEM OVERVIEW

- Stabilized by dynamically forming a dominant output pole
- Fast
- Power efficient
- Wide swing
- Highly linear
- Inherently scalable

SYSTEM OVERVIEW

- Stabilized by dynamically forming a dominant output pole
- Fast
- Power efficient
- Wide swing
- Highly linear
- Inherently scalable

B. Hershberg, et. al. "Ring Amplifiers for Switched Capacitor Circuits" JSSC, Dec. 2012

SYSTEM OVERVIEW

- Stabilized by dynamically forming a dominant output pole
- Fast
- Power efficient
- Wide swing
- Highly linear
- Inherently scalable

B. Hershberg, et. al. "Ring Amplifiers for Switched Capacitor Circuits" JSSC, Dec. 2012

Y. Lim et. al., "A 1 mW 71.5 dB SNDR 50 MS/s 13 bit Fully Differential Ring Amplifier Based SAR-Assisted Pipeline ADC" JSSC, Dec. 2015

SYSTEM OVERVIEW

- Only powered during amplification phase
- Power-gating and pullup switches

SYSTEM OVERVIEW

 Tunable CMOS resistor biasing

> J. Lagos, et. al. "A Single-Channel, 600-MS/s, 12-b, Ringamp-Based Pipelined ADC in 28-nm CMOS" JSSC, Feb. 2019

 Digitally controlled capacitor DACs bias the CMOS resistor with trapped-charge

SYSTEM OVERVIEW

- CMFB trappedcharge based biasing
- 3 CMFB loops
 - DC high-gain loop
 - AC low-gain loop
 - AC stabilizing loop

SYSTEM OVERVIEW

- CMFB trappedcharge based biasing
- 3 CMFB loops
 - DC high-gain loop
 - AC low-gain loop
 - AC stabilizing loop

SYSTEM OVERVIEW

- CMFB trappedcharge based biasing
- 3 CMFB loops
 - DC high-gain loop
 - AC low-gain loop
 - AC stabilizing loop

ΕN

3.1: A 3.2GS/s 10 ENOB 61mW Ringamp ADC in 16nm with Background Monitoring of Distortion

SYSTEM OVERVIEW

- CMFB trappedcharge based biasing
- 3 CMFB loops
 - DC high-gain loop
 - AC low-gain loop
 - AC stabilizing loop

MOTIVATION SDR MONITORING

- Digitally controlled ringamp biasing
 - What is the optimal code?
 - How to track across PVT?
- Approach: measure the ringamp-related error and minimize
 - Interested in higher-order error terms
 - First-order gain error we can already correct with well known methods

CONCEPT SDR MONITORING

 Residual error at V_x consists of two components:

$$V_X = \frac{V_{OUT}}{A_{OL}} + \varepsilon_{ND}$$
Residual error at V_x consists of two components:

$$V_X = \frac{V_{OUT}}{A_{OL}} + \varepsilon_{ND}$$

finite gain
error

 Residual error at V_x consists of two components:

 Residual error at V_x consists of two components:

...rearranging:
$$\varepsilon_{ND} = V_X - \frac{V_{OUT}}{A_{OL}}$$

IN

β

 A_{OL}

OUT

Х

 Residual error at V_x consists of two components:

$$V_{X} = \frac{V_{OUT}}{A_{OL}} + \varepsilon_{ND} \qquad ...rearranging: \quad \varepsilon_{ND} = V_{X} - \frac{V_{OUT}}{A_{OL}}$$

finite gain noise & where: $A_{OL} = avg\left(\frac{V_{OUT}}{V_{X}}\right)$

 Residual error at V_x consists of two components:

$$V_X = \frac{V_{OUT}}{A_{OL}} + \varepsilon_{ND}$$
 ...rearranging: $\varepsilon_{ND} = V_X - \frac{V_{OUT}}{A_{OL}}$

SNDR can be computed as:

$$SNDR_{dB} = 10 \log_{10} \left(\frac{\beta^2 \cdot var(V_{OUT})}{var(\varepsilon_{ND})} \right)$$

 Residual error at V_x consists of two components:

SNDR can be computed as:

 $V_X = \frac{V_{OUT}}{A_{OL}} + \varepsilon_{ND}$

$$SNDR_{dB} = 10 \log_{10} \left(\frac{\beta^2 \cdot var(V_{OUT})}{var(\varepsilon_{ND})} \right) = 10 \log_{10} \left(\frac{\beta^2 \cdot var(V_{OUT})}{var(V_X - V_{OUT}/A_{OL})} \right)$$

- Need to know voltages at nodes X and OUT
 - OUT: pipeline backend
 - X: extra ADC needed

- Need to know voltages at nodes X and OUT
 - OUT: pipeline backend
 - X: extra ADC needed
 - small input signal range (~1mV)
 - high accuracy
 - small hardware footprint

- Need to know voltages at nodes X and OUT
 - OUT: pipeline backend
 - X: extra ADC needed
 - small input signal range (~1mV)
 - high accuracy
 - small hardware footprint

Single comparator stochastic ADC!

Basic idea: use comparator's gaussian noise distribution to quantize

IN
$$\downarrow$$
 1,1,0,1,0,0,1,... avg erfinv v_{REF}/σ_{REF} D_{OUT}

[B. Verbruggen, JSSC, Sept. 2015]

CONCEPT STOCHASTIC ADC

CONCEPT STOCHASTIC ADC

CONCEPT STOCHASTIC ADC

STOCHASTIC ADC

- Digital output represents the *average* value of V_{IN}
 - Noise in V_{IN} is attenuated
- Our SNDR estimator, stripped of noise, becomes an SDR measurement

- Preparation step #1
 - Measure comparator's noise sigma in terms of known reference voltages
 - Provides volts-per-sigma conversion factor needed later

- Preparation step #1
 - Measure comparator's noise sigma in terms of known reference voltages
 - Provides volts-per-sigma conversion factor needed later
- Preparation step #2

© 2019 IEEE

 Null the comparator's own offset

The two ADCs output
D(V_x) and D(V_{out})

 Data is accumulated by sorting D(V_x) w.r.t. D(V_{out}) into "bins"

^{3.1:} A 3.2GS/s 10 ENOB 61mW Ringamp ADC in 16nm with Background Monitoring of Distortion

 Each bin performs the stochastic ADC quantization procedure described earlier

- Data-stream fed into estimator equations
- A biasing control block closes the control loop

- Analog hardware implemented on-chip
- Digital processing implemented off-chip
- Can operate at low speeds with under-sampling
 - Total power cost negligible

MEASURED PERFORMANCE

- Baseline: Channel THD
 - Not the same as Stage SDR, but similar...

MEASURED PERFORMANCE

- Baseline: Channel THD
 - Not the same as Stage SDR, but similar...

MEASURED PERFORMANCE

- Baseline: Channel THD
 - Not the same as Stage SDR, but similar...

MEASURED PERFORMANCE

- Baseline: Channel THD
 - Not the same as Stage SDR, but similar...
- Successful proof-of-concept

IMPLEMENTATION IN 16NM CMOS MEASURED PERFORMANCE

- 0.194mm² active area
- Single configuration used for all measurements reported
 - Digital controls
 - Analog levels

POWER BREAKDOWN

MEASURED PERFORMANCE

- V_{DD} = 850mV
- $V_{REFM/P} = 50 mV / 800 mV$
 - Ringamps utilize 88% of supply
- 61.3mW total power
 - Input buffer = 11.2mW
 - Clock buffer = 2.4mW
 - Each channel = 11.9mW

FFT MEASURED PERFORMANCE

(Spurs labelled with X are due to interleaving mismatch)

62.9dB SNDR

- 80.3dB SFDR
- Decimated by 6247

- 61.7dB SNDR
- 73.3dB SFDR
- Interleaving spurs remain <80dB
 - Tunable sampling edges with better than 5fs precision

(Spurs labelled with X are due to interleaving mismatch)

SWEEP: INPUT AMPLITUDE MEASURED PERFORMANCE

- 80.7dB Peak SFDR at -1.9dBFS
- 61.7dB Peak SNDR at -1dBFS
- Compression above -1dBFS due to HD3 from input buffer

DNL / INL MEASURED PERFORMANCE

 Compression at edge codes also due to HD3 of input buffer

3.1: A 3.2GS/s 10 ENOB 61mW Ringamp ADC in 16nm with Background Monitoring of Distortion

© 2019 IEEE International Solid-State Circuits Conference

SWEEP: INPUT FREQUENCY MEASURED PERFORMANCE

 Drop in HD3 around f_{in}=1GHz related to bond-wires / PCB

3.1: A 3.2GS/s 10 ENOB 61mW Ringamp ADC in 16nm with Background Monitoring of Distortion

MEASURED PERFORMANCE

 SoTA for direct-RF sampling ADCs

NCE	This work	Vaz ISSCC 2017	Devarajan ISSCC 2017	Straayer ISSCC 2016	Wu ISSCC 2016	Ali VLSI 2016
Architecture	Pipeline	Pipe-SAR	Pipeline	Pipeline	Pipeline	Pipeline
Sampling rate [Gsps]	3.2	4	10	4	4	5
Technology [nm]	16	16	28	65	16	28
ENOB Nyquist [bit]	10.0	9.2	8.8	8.9	9.0	9.3
SFDR Nyquist [dB]	73.3	67.0	64	64.0	68.0	70
Power [mW]	61	513	2900	2214	300	2300
FoM _{Walden} [fJ/c.step]	19	214	631	1130	145	709
FoM _{Schreier} [dB]	166	153	147	145	154	148
Area [mm ²]	0.194	1.04	20.2	11.0	0.34	14.4

3.1: A 3.2GS/s 10 ENOB 61mW Ringamp ADC in 16nm with Background Monitoring of Distortion

MEASURED PERFORMANC

- SoTA for direct-RF sampling ADCs
 - Highest ENOB

NCE	This work	Vaz ISSCC 2017	Devarajan ISSCC 2017	Straayer ISSCC 2016	Wu ISSCC 2016	Ali VLSI 2016
Architecture	Pipeline	Pipe-SAR	Pipeline	Pipeline	Pipeline	Pipeline
Sampling rate [Gsps]	3.2	4	10	4	4	5
Technology [nm]	16	16	28	65	16	28
ENOB Nyquist [bit]	10.0	9.2	8.8	8.9	9.0	9.3
SFDR Nyquist [dB]	73.3	67.0	64	64.0	68.0	70
Power [mW]	61	513	2900	2214	300	2300
FoM _{Walden} [fJ/c.step]	19	214	631	1130	145	709
FoM _{Schreier} [dB]	166	153	147	145	154	148
Area [mm ²]	0.194	1.04	20.2	11.0	0.34	14.4

MEASURED PERFORMANC

- SoTA for direct-RF sampling ADCs
 - Highest ENOB
 - Highest Linearity

NCE						
	This work	Vaz ISSCC 2017	Devarajan ISSCC 2017	Straayer ISSCC 2016	Wu ISSCC 2016	Ali VLSI 2016
Architecture	Pipeline	Pipe-SAR	Pipeline	Pipeline	Pipeline	Pipeline
Sampling rate [Gsps]	3.2	4	10	4	4	5
Technology [nm]	16	16	28	65	16	28
ENOB Nyquist [bit]	10.0	9.2	8.8	8.9	9.0	9.3
SFDR Nyquist [dB]	73.3	67.0	64	64.0	68.0	70
Power [mW]	61	513	2900	2214	300	2300
FoM _{Walden} [fJ/c.step]	19	214	631	1130	145	709
FoM _{Schreier} [dB]	166	153	147	145	154	148
Area [mm ²]	0.194	1.04	20.2	11.0	0.34	14.4

MEASURED PERFORMANC

- SoTA for direct-RF sampling ADCs
 - Highest ENOB
 - Highest Linearity
 - Lowest Power

This work	Vaz ISSCC 2017	Devarajan ISSCC 2017	Straayer ISSCC 2016	Wu ISSCC 2016	Ali VLSI 2016
Pipeline	Pipe-SAR	Pipeline	Pipeline	Pipeline	Pipeline
3.2	4	10	4	4	5
16	16	28	65	16	28
10.0	9.2	8.8	8.9	9.0	9.3
73.3	67.0	64	64.0	68.0	70
61	513	2900	2214	300	2300
19	214	631	1130	145	709
166	153	147	145	154	148
0.194	1.04	20.2	11.0	0.34	14.4
	This work Pipeline 3.2 16 10.0 73.3 61 19 166 0.194	Vaz ISSCC 2017PipelinePipe-SAR3.24161610.09.273.367.061513192141661530.1941.04	Vaz ISSCC 2017Devarajan ISSCC 2017PipelinePipe-SARPipeline3.241016162810.09.28.873.367.064615132900192146311661531470.1941.0420.2	This workVaz ISSCC 2017Devarajan ISSCC 2017Straayer ISSCC 2016PipelinePipe-SARPipelinePipeline3.241041616286510.09.28.88.973.367.06464.061513290022141921463111301661531471450.1941.0420.211.0	Vaz ISSCC 2017Devarajan ISSCC 2017Straayer ISSCC 2016Wu ISSCC 2016PipelinePipe-SARPipelinePipelinePipeline3.241044161628651610.09.28.88.99.073.367.06464.068.061513290022143001921463111301451661531471451540.1941.0420.211.00.34

MEASURED PERFORMANCI

- SoTA for direct-RF sampling ADCs
 - Highest ENOB
 - Highest Linearity
 - **Lowest Power**
 - Best FoM

This work	Vaz ISSCC 2017	Devarajan ISSCC 2017	Straayer ISSCC 2016	Wu ISSCC 2016	Ali VLSI 2016
Pipeline	Pipe-SAR	Pipeline	Pipeline	Pipeline	Pipeline
3.2	4	10	4	4	5
16	16	28	65	16	28
10.0	9.2	8.8	8.9	9.0	9.3
73.3	67.0	64	64.0	68.0	70
61	513	2900	2214	300	2300
19	214	631	1130	145	709
166	153	147	145	154	148
0.194	1.04	20.2	11.0	0.34	14.4
	This work Pipeline 3.2 16 10.0 73.3 61 19 166 0.194	Vaz ISSCC 2017PipelinePipe-SAR3.24161610.09.273.367.061513192141661530.1941.04	Vaz ISSCC 2017Devarajan ISSCC 2017PipelinePipe-SARPipeline3.241016162810.09.28.873.367.064615132900192146311661531470.1941.0420.2	This workVaz ISSCC 2017Devarajan ISSCC 2017Straayer ISSCC 2016PipelinePipe-SARPipelinePipeline3.241041616286510.09.28.88.973.367.064.0221461513290022141921463111301661531471450.1941.0420.211.0	This workVaz ISSCC 2017Devarajan ISSCC 2017Straayer ISSCC 2016Wu ISSCC 2016PipelinePipe-SARPipelinePipelinePipeline3.241044161628651610.09.28.88.99.073.367.064464.068.01921463111301451661531471451540.1941.0420.211.00.34

MEASURED PERFORMANCE

- SoTA for direct-RF sampling ADCs
 - Highest ENOB
 - Highest Linearity
 - Lowest Power
 - Best FoM
- Major advance in SoTA

NCE	This work	Vaz ISSCC 2017	Devarajan ISSCC 2017	Straayer ISSCC 2016	Wu ISSCC 2016	Ali VLSI 2016
Architecture	Pipeline	Pipe-SAR	Pipeline	Pipeline	Pipeline	Pipeline
Sampling rate [Gsps]	3.2	4	10	4	4	5
Technology [nm]	16	16	28	65	16	28
ENOB Nyquist [bit]	10.0	9.2	8.8	8.9	9.0	9.3
SFDR Nyquist [dB]	73.3	67.0	64	64.0	68.0	70
Power [mW]	61	513	2900	2214	300	2300
FoM _{Walden} [fJ/c.step]	19	214	631	1130	145	709
FoM _{Schreier} [dB]	166	153	147	145	154	148
Area [mm ²]	0.194	1.04	20.2	11.0	0.34	14.4

COMPARISON WITH SOTA MEASURED PERFORMANCE

Walden FoM

B. Murmann, "ADC Performance Survey 1997-2018," [Online]. Available: http://web.stanford.edu/~murmann/adcsurvey.html.

THE BIG PICTURE HOW DID WE DO IT?

Solved a block-level problem to "change the rules"

THE BIG PICTURE HOW DID WE DO IT?

- Solved a block-level problem to "change the rules"
- Re-evaluated the system design based on these new rules
 - Amplifier-intensive architecture "ok"
 - E.g. 1.5b/stage pipeline

THE BIG PICTURE HOW DID WE DO IT?

- Solved a block-level problem to "change the rules"
- Re-evaluated the system design based on these new rules
- Broader message for *all* circuit designers
 - Can ringamps change the rules in *your* application too?
 - Pipeline, SAR, Pipelined-SAR, Delta-Sigma, Active Filters, VGAs, etc..

THANK YOU FOR YOUR ATTENTION!

ADDITIONAL MATERIALS...

DISTORTION TRACKING "CAL ADC" CIRCUIT

- On-chip stochastic ADC circuit (calADC)
 - Compact layout
- 4 modes of operation
 - Disable
 - Self-calibration
 - **Regular operation**
 - Dummy operation

