A 6-to-600MS/s Fully Dynamic Ringamp Pipelined ADC with Asynchronous Event-Driven Clocking in 16nm

Benjamin Hershberg, Barend van Liempd, Nereo Markulic, Jorge Lagos, Ewout Martens, Davide Dermit, Jan Craninckx imec, Leuven, Belgium

- "Deep" pipeline = many stages
- Clock tree has many independent branches
 - Mismatch
 - Parasitics
 - Skew

master clock

- Needs timing margin for reliable operation
 - Respect causal timing relationships
 - Guarantee non-overlapping clock phases

- Becomes exponentially more difficult at high speeds
 - Absolute timing overheads don't scale with relative clock speeds
- Difficult design tradeoffs
 - Power
 - Speed
 - Jitter
 - Reliability

- Residue amplification typically dominates power
 - Ring amplifiers have begun to change this
 - Now clock power can even dominate...

- Residue amplification typically dominates power
 - Ring amplifiers have begun to change this
 - Now clock power can even dominate...

```
J. Lagos, et al.
"A Single-Channel, 600-MS/s, 12-b, Ringamp-Based Pipelined ADC in 28-nm CMOS"
JSSC, Feb. 2019
```

J. Lagos, et al. "A 1Gsps, 12-bit, Single-Channel Pipelined ADC with Dead-Zone-Degenerated Ring Amplifiers" JSSC, Mar. 2019

ASYNCHRONOUS TIMING CONTROL MOTIVATION

- Asynchronous, event-driven timing control
 - Widely used in SAR and pipelined SAR
 - Still unexplored in "deep" pipeline ADCs

Typical Pipelined-SAR clocking scheme

Sampler	
Stage 1 SAR	
Residue Amplifier	
Stage 2 SAR	

IN THIS TALK PREVIEW

- Asynchronous, event-driven timing for "deep" pipelined ADCs
- 60dB SNDR, 78dB SFDR single-channel ringamp-based pipelined ADC
 - Fully dynamic power consumption
 - FOM_w < 13fJ/conv-step from 6MS/s to 600 MS/s</p>

TOP LEVEL SYSTEM OVERVIEW

- 7 x 1.5b/stage
- 1.5b + 3b backend flash stage

TOP LEVEL SYSTEM OVERVIEW

- 7 x 1.5b/stage
- 1.5b + 3b backend flash stage
- Event triggering orchestrated with inter-stage communication busses

 Some critical event signals are sent directly from analog blocks

3.6: A 6-to-600MS/s Fully Dynamic Ringamp Pipelined ADC with Asynchronous Event-Driven Clocking in 16nm

- Analog blocks driven directly by control bus
- BENEFIT: Both clock distribution and line driving
 - Lower power
 - Compact layout

STAGE OPERATION

Stage 1 MDAC with Passive Hold

Clear (optional)

Clear (optional)

Track

Stage 1 MDAC with Passive Hold

- Clear (optional)
- Track
- Quantize (Passive hold)
 - Explained in talk 3.1

- Clear (optional)
- Track
- Quantize (Passive hold)

Amplify

Stage 1 MDAC with Passive Hold

Stages 2-7 MDAC with Early Quantization

Clear (optional)

Track

Stages 2-7 MDAC with Early Quantization

3.6: A 6-to-600MS/s Fully Dynamic Ringamp Pipelined ADC with Asynchronous Event-Driven Clocking in 16nm

IMPLEMENTATION DETAILS

STAGES 2-7

Stages 2-7 MDAC with Early Quantization

3.6: A 6-to-600MS/s Fully Dynamic Ringamp Pipelined ADC with Asynchronous Event-Driven Clocking in 16nm

IMPLEMENTATION DETAILS

STAGES 2-7

Stages 2-7 MDAC with Early Quantization

24 of 93

3.6: A 6-to-600MS/s Fully Dynamic Ringamp Pipelined ADC with Asynchronous Event-Driven Clocking in 16nm

IMPLEMENTATION DETAILS

STAGES 2-7

Stages 2-7 MDAC with Early Quantization

25 of 93

Stages 2-7 MDAC with Early Quantization

© 2019 IEEE

- Clear (optional)
- Track
 - Early quantize (1.5b)
- Amplify

Stages 2-7 MDAC with Early Quantization

TIMING OPERATION EXAMPLE

 Pipeline in idle state, waiting for a master clock...

3.6: A 6-to-600MS/s Fully Dynamic Ringamp Pipelined ADC with Asynchronous Event-Driven Clocking in 16nm

3.6: A 6-to-600MS/s Fully Dynamic Ringamp Pipelined ADC with Asynchronous Event-Driven Clocking in 16nm

CORRECT-BY-CONSTRUCTION EVENT-DRIVEN TIMING

BENEFIT: Event-driven control is correct-by-construction

- Delay immune
- Parasitic/loading immune
- Skew immune
- But, the state machines must be correctly designed!

ANALOG-BASED EVENT TRIGGERS

TYPES OF TRIGGERS EVENT-DRIVEN TIMING

- Event triggers can be generated from:
 - Delay cells
 - Analog events
 - Combination of both
- Example analog trigger: detect when ringamp is done slewing

Example Residue Amplification

3 phases of operation

Example Residue Amplification

- 3 phases of operation
 - 1. Slewing

Example Residue Amplification

- 3 phases of operation
 - 1. Slewing
 - 2. Stabilization

Example Residue Amplification

- 3 phases of operation
 - 1. Slewing
 - 2. Stabilization
 - 3. Settling

Example Residue Amplification

- Stabilization forces A,C high and B,D low
- Thus, fine settling begins when: $A \cdot B' \cdot C \cdot D' = 1$

Example Residue Amplification

- Simple sensor using logic gates
 - Minimal loading of internal nodes

Example Residue Amplification

Dynamic latch grabs *first* detection event

Example Residue Amplification

Dynamic latch grabs *first* detection event

EARLY QUANTIZATION CONCEPT

- Slew-done is the perfect time for early quantization
 - Accurate enough
 - Doesn't disrupt fine settling

CHALLENGES

- Triggering on analog events requires correct analog operation
 - Not always the case
 - E.g. ringamp CMFB startup
 - Output saturates
 - "slew done" never detected
- Key Observation: any deadlock will eventually propagate to the front
 - Detect & force reset

RE-SYNCHRONIZATION OF DIGITAL OUTPUT EVENT-DRIVEN TIMING

Digital outputs exit pipeline asynchronously

3.6: A 6-to-600MS/s Fully Dynamic Ringamp Pipelined ADC with Asynchronous Event-Driven Clocking in 16nm

RE-SYNCHRONIZATION OF DIGITAL OUTPUT EVENT-DRIVEN TIMING

Causal relation between signals used to shift data:

- 1. Down to the end for alignment
- 2. Back to the front for synchronization

3.6: A 6-to-600MS/s Fully Dynamic Ringamp Pipelined ADC with Asynchronous Event-Driven Clocking in 16nm

BENEFITS OF CONSTANT INTERNAL SPEED

CONSTANT INTERNAL SPEED OBSERVATION

- Internal processing behavior is independent of clock rate
 - 6 MS/s same as 600 MS/s
- Several related advantages

Conventional

Event-driven

CONSTANT INTERNAL SPEED ADVANTAGES

- BENEFIT: Linear scaling of power w.r.t. clock
 - When combined with ringamp power-down

Conventional

CONSTANT INTERNAL SPEED ADVANTAGES

- BENEFIT: Eliminates critical leakage-window constraints
 - E.g. MDAC switches
 - Optimize for *highest* speed of operation

Conventional

3.6: A 6-to-600MS/s Fully Dynamic Ringamp Pipelined ADC with Asynchronous Event-Driven Clocking in 16nm

CONSTANT INTERNAL SPEED ADVANTAGES

BENEFIT: Automatically maximizes input signal track time

CONSTANT INTERNAL SPEED ADVANTAGES

BENEFIT: Automatically maximizes input signal track time

CONSTANT INTERNAL SPEED ADVANTAGES

- BENEFIT: Flexible state machine behavior
 - Easily reconfigured
 - Entire phases added/subtracted
 - Special calibration modes

MEASURED PERFORMANCE

IMPLEMENTATION IN 16NM CMOS MEASURED PERFORMANCE

- 0.037mm² active area
- Single chip configuration for all measurements reported
 - Digital controls
 - Analog levels

FFT MEASURED PERFORMANCE

Low Frequency Input 60MHz input, 600MHz clock, -0.1dBFS

- 60.4dB SNDR
- 83.1dB SFDR
- Decimated by 3201

MEASURED PERFORMANCE

Nyquist Input 300MHz input, 600MHz clock, -0.1dBFS

- 60.2dB SNDR
- 78.3dB SFDR
- 6.0mW total power

SWEEP: INPUT AMPLITUDE MEASURED PERFORMANCE

- No compression at full-scale
 - Ringamps maintain high linearity even with large output swing
 - Utilize 88% of supply range
 - V_{DD} = 850mV
 - V_{REFP} = 800mV
 - V_{REFM} = 50mV

POWER CONSUMPTION MEASURED PERFORMANCE

Clock power minimized

SWEEP: CLOCK FREQUENCY MEASURED PERFORMANCE

- Fully dynamic power consumption
 - Linear scaling w.r.t. clock
- Attractive feature for multistandard mobile wireless applications

SWEEP: CLOCK FREQUENCY MEASURED PERFORMANCE

- Fully dynamic power consumption
 - Linear scaling w.r.t. clock
- Attractive feature for multistandard mobile wireless applications

SWEEP: POWER SUPPLY MEASURED PERFORMANCE

- Robust to supply variation
 - Ringamp
 - Timing delays
- V_{REFP} reduced to 750mV for this test

SWEEP: RINGAMP DIGITAL BIASING CONTROLS MEASURED PERFORMANCE

Stage 1 Ringamp Digital Biasing Controls 250 60 Ringamp biasing code (PMOS) 200 58 150 SNDR (dB) 56 54 100 50 52 50 0 250 50 100 150 200 0 Ringamp biasing code (NMOS)

 Ringamp robust to biasing variation

© 2019 IEEE International Solid-State Circuits Conference

SWEEP: COMMON-MODE REFERENCE MEASURED PERFORMANCE

Internal Common-Mode Reference Voltage

-2dBFS input tone

- Internal common mode reference V_{CM}
- Demonstrates robustness of Ringamp CMFB circuit
 - Shown in talk 3.1

SWEEP: INPUT COMMON MODE VOLTAGE MEASURED PERFORMANCE

External Input Common-Mode Voltage

-2dBFS input tone

- External common-mode input
 V_{CMI} on PCB
- Demonstrates robustness of Ringamp CMFB circuit
 - Shown in talk 3.1

SoTA comparison

	High Speed Ringamp SoTA			SoTA ir	in [1] for SNDR > 56dB, Fs > 410MHz			
	This work	Lagos CICC 2018	Lagos VLSI 2017	Venca ISSCC 2016	Nam VLSI 2016	Lien VLSI 2016	Sung ISSCC 2015	
Architecture	Pipeline	Pipeline	Pipeline	ΤΙ SAR ΔΣ	ΤΙ SAR ΔΣ	TI Pipe-SAR	TI FATI-SAR	
Sampling rate (max) [MS/s]	600	1000	600	600	1600	800	1600	
Number of channels	1	1	1	4	8	4	12	
Per-channel rate [MS/s]	600	1000	600	150	200	200	133	
Technology [nm]	16	28	28	28	65	28	65	
ENOB Nyquist [bit]	9.7	9.1	9.1	9.3	10.6	9.8	9.0	
SFDR Nyquist [dB]	78.3	73.1	69.2	66.0	65.3	75.0	61.2	
Power [mW]	6.0	24.8	14.2	26.5	37.7	14.6	17.3	
FoM _{Walden} [fJ/c.step]	12.0	45.0	44.3	68.0	17.8	20.0	21.0	
FoM _{Schreier} [dB]	167.2	159.6	159.5	158.5	168.6	165.2	162.8	
Core area [mm ²]	0.037	0.540	0.620	0.042	0.900	0.093	0.360	
Calibration	gain	gain	gain	offset, gain, mismatch	offset, gain, timing skew	offset, gain	offset	

 High speed ringamp-based ADCs

	High Speed Ringamp SoTA			SoTA in [1] for SNDR > 56dB, Fs > 410MHz				
	This work	Lagos CICC 2018	Lagos VLSI 2017	Venca ISSCC 2016	Nam VLSI 2016	Lien VLSI 2016	Sung ISSCC 2015	
Architecture	Pipeline	Pipeline	Pipeline	ΤΙ SAR ΔΣ	TI SAR ΔΣ	TI Pipe-SAR	TI FATI-SAR	
Sampling rate (max) [MS/s]	600	1000	600	600	1600	800	1600	
Number of channels	1	1	1	4	8	4	12	
Per-channel rate [MS/s]	600	1000	600	150	200	200	133	
Technology [nm]	16	28	28	28	65	28	65	
ENOB Nyquist [bit]	9.7	9.1	9.1	9.3	10.6	9.8	9.0	
SFDR Nyquist [dB]	78.3	73.1	69.2	66.0	65.3	75.0	61.2	
Power [mW]	6.0	24.8	14.2	26.5	37.7	14.6	17.3	
FoM _{Walden} [fJ/c.step]	12.0	45.0	44.3	68.0	17.8	20.0	21.0	
FoM _{Schreier} [dB]	167.2	159.6	159.5	158.5	168.6	165.2	162.8	
Core area [mm ²]	0.037	0.540	0.620	0.042	0.900	0.093	0.360	
Calibration	gain	gain	gain	offset, gain, mismatch	offset, gain, timing skew	offset, gain	offset	

 High speed ringamp-based ADCs

 All ADCs with SNDR > 56dB, Fs > 410MHz

	High Speed Ringamp SoTA			SoTA in [1] for SNDR > 56dB, Fs > 410MHz			
	This work	Lagos CICC 2018	Lagos VLSI 2017	Venca ISSCC 2016	Nam VLSI 2016	Lien VLSI 2016	Sung ISSCC 2015
Architecture	Pipeline	Pipeline	Pipeline	TI SAR ΔΣ	ΤΙ SAR ΔΣ	TI Pipe-SAR	TI FATI-SAR
Sampling rate (max) [MS/s]	600	1000	600	600	1600	800	1600
Number of channels	1	1	1	4	8	4	12
Per-channel rate [MS/s]	600	1000	600	150	200	200	133
Technology [nm]	16	28	28	28	65	28	65
ENOB Nyquist [bit]	9.7	9.1	9.1	9.3	10.6	9.8	9.0
SFDR Nyquist [dB]	78.3	73.1	69.2	66.0	65.3	75.0	61.2
Power [mW]	6.0	24.8	14.2	26.5	37.7	14.6	17.3
FoM _{Walden} [fJ/c.step]	12.0	45.0	44.3	68.0	17.8	20.0	21.0
FoM _{Schreier} [dB]	167.2	159.6	159.5	158.5	168.6	165.2	162.8
Core area [mm ²]	0.037	0.540	0.620	0.042	0.900	0.093	0.360
Calibration	gain	gain	gain	offset, gain, mismatch	offset, gain, timing skew	offset, gain	offset

- Competitive performance across all metrics
- Record FoM_W of 12fJ/c-step

	High Speed Ringamp SoTA			SoTA in [1] for SNDR > 56dB, Fs > 410MHz				
	This work	Lagos CICC 2018	Lagos VLSI 2017	Venca ISSCC 2016	Nam VLSI 2016	Lien VLSI 2016	Sung ISSCC 2015	
Architecture	Pipeline	Pipeline	Pipeline	ΤΙ SAR ΔΣ	ΤΙ SAR ΔΣ	TI Pipe-SAR	TI FATI-SAR	
Sampling rate (max) [MS/s]	600	1000	600	600	1600	800	1600	
Number of channels	1	1	1	4	8	4	12	
Per-channel rate [MS/s]	600	1000	600	150	200	200	133	
Technology [nm]	16	28	28	28	65	28	65	
ENOB Nyquist [bit]	9.7	9.1	9.1	9.3	10.6	9.8	9.0	
SFDR Nyquist [dB]	78.3	73.1	69.2	66.0	65.3	75.0	61.2	
Power [mW]	6.0	24.8	14.2	26.5	37.7	14.6	17.3	
FoM _{Walden} [fJ/c.step]	12.0	45.0	44.3	68.0	17.8	20.0	21.0	
FoM _{Schreier} [dB]	167.2	159.6	159.5	158.5	168.6	165.2	162.8	
Core area [mm ²]	0.037	0.540	0.620	0.042	0.900	0.093	0.360	
Calibration	gain	gain	gain	offset, gain, mismatch	offset, gain, timing skew	offset, gain	offset	

Walden FoM

B. Murmann, "ADC Performance Survey 1997-2018," [Online]. Available: http://web.stanford.edu/~murmann/adcsurvey.html.

THE BIG PICTURE

CONCLUSION

- Asynchronous, event-driven control in "deep" pipelines offers many compelling benefits
 - Efficient
 - Reconfigurable
 - Robust
- High speed ringamp-based pipelines offer a viable alternative to multichannel SAR architectures

THANK YOU FOR YOUR ATTENTION!

ADDITIONAL MATERIALS...

1. Receives previous stage ringamp's slew-done signal

- Receives previous stage ringamp's slew-done signal
- 2. Samples previous stage

- 1. Receives previous stage ringamp's slew-done signal
- 2. Samples previous stage
- 3. Down-shifts internal common-mode voltage

- 1. Receives previous stage ringamp's slew-done signal
- 2. Samples previous stage
- 3. Down-shifts internal common-mode voltage
- 4. Initiates comparison

- 1. Receives previous stage ringamp's slew-done signal
- 2. Samples previous stage
- 3. Down-shifts internal common-mode voltage
- 4. Initiates comparison
- 5. Sends result to subDAC

SWEEP: INPUT FREQUENCY MEASURED PERFORMANCE

- Linearity limited by pass-gate input switches
 - Benefits of 16nm allow for passgates instead of bootstrapping