TEE Custom Integrated Circuits Conform

IEEE Custom Integrated Circuits Conference

Ringamp: The Scalable Amplifier We've All Been Waiting For?

Benjamin Hershberg

Imec

March 22nd 2020

NANOSCALE CMOS ADAPTATION AND SURVIVAL

Some ADC architectures have thrived and expanded.

SAR VCO-based CT ΔΣ

NANOSCALE CMOS ADAPTATION AND SURVIVAL

Others have lost ground, forced into niche applications.

PipelineFolding FlashAlgorithmicDT ΔΣ

NANOSCALE CMOS ADAPTATION AND SURVIVAL

The reason?

... a hidden bottleneck:

Residue Amplification

What did we lose in diversity?

How has this constrained our solutions?

REPLACING THE OPAMP PROPOSED SOLUTIONS

Zero-crossing based

Charge-steering

Gm-C style Dynamic Amplifier

Gm-R style Dynamic Amplifier

THE "IDEAL AMPLIFIER" WISHLIST

THE "IDEAL AMPLIFIER" WISHLIST

FUNDAMENTALS

RING OSCILLATOR

IN SWITCHED CAPACITOR FEEDBACK

RING OSCILLATOR

IN SWITCHED CAPACITOR FEEDBACK

RING OSCILLATOR

IN SWITCHED CAPACITOR FEEDBACK

- 😊 Large gain
- Rail to rail swing
- Observe Maximal slewing efficiency
- Small, simple layout
- Inherent class-AB behavior
- Fully compatible with digital CMOS

Sounds great! Only one problem...

IT'S AN OSCILLATOR!

DUALITY OSCILLATOR → AMPLIFIER

Any ring oscillator can be stabilized

It's just a matter of putting the poles in the right place

- Make p1 & p2 as fast as technology will allow
 - p1 & p2 constrained by technology limits, not kT/C_{LOAD} noise requirement
 - Scales well into nanoscale CMOS
- Stabilize with p3
 - ring oscillator → ring amplifier

- But we can do even better
 - Dynamic biasing

Begin very fast but unstable:

- But we can do even better
 - Dynamic biasing

Dynamically shift output pole:

- But we can do even better
 - Dynamic biasing

RING AMPLIFIER

BASIC PRINCIPLES

- AC analysis only explains steady-state
 - How do we get to steady state?
 - Do we ever get to steady state?
- Must also consider
 - DC
 - Transient

A "stable" ringamp with 73° phase margin:

[Lim, JSSC 2015]

- Split signal into two paths
- Shift DC level (of transient wave) differently in each path

- Slewing
- Stabilization

DYNAMIC LARGE-SIGNAL STABILIZATION STABILIZATION

DYNAMIC LARGE-SIGNAL STABILIZATION STABILIZATION

- 1. Reduced avg. overdrive voltage
- 2. Reduced output current
- 3. Reduced oscillation amplitude

Example here: operation on the edge of stability

DYNAMIC LARGE-SIGNAL STABILIZATION STABILIZATION (IN NANOSCALE)

- Modern example in 16nm FinFET CMOS
 - Less intrinsic gain
 - Different dynamic biasing mechanism (resistor)
 - Class-AB biasing (outputs in weak-inversion at steady-state)
- But fundamental idea & behavior still the same

DYNAMIC LARGE-SIGNAL STABILIZATION STABILIZATION (IN NANOSCALE)

- Modern example in 16nm FinFET CMOS
 - Less intrinsic gain
 - Different dynamic biasing mechanism (resistor)
 - Class-AB biasing (outputs in weak-inversion at steady-state)
- But fundamental idea & behavior still the same
- V_{OUT} affects stability!
 - V_{DS} varies w.r.t. V_{OUT}
 - Thus, output pole location varies w.r.t. V_{OUT}

DYNAMIC LARGE-SIGNAL STABILIZATION THREE OPERATION PHASES

- Slewing
- Stabilization
- Settling

DYNAMIC LARGE-SIGNAL STABILIZATION SETTLING

- Weak-inversion steady-state
- Min V_{ov}
 - © Low quiescent current
 - ③ Noise filtering
- Min V_{DSAT}
 - ☺ Wide swing
 - ☺ High linearity
- Max r_o
 - ☺ High gain
 - ③ High linearity

DYNAMIC LARGE-SIGNAL STABILIZATION NOISE

- Noise at output filtered by steadystate g_m
 - Internal noise
 - Supply noise
- With smart design, noise at least as good as opamp
 - But much faster
 - But much more efficient

DYNAMIC LARGE-SIGNAL STABILIZATION NOISE

- SNR and THD may have different bias optimums
- Noise
 - Best when over-damped
 - lowest g_m for most filtering
- Linearity
 - Best when critically-damped
 - Fastest settling

THE "IDEAL AMPLIFIER" WISHLIST

BIASING MODE

TOPOLOGY SELECTION

Class-B

- Sub-threshold "dead-zone"
- Surrounded by "weak-zone"

 V_{IN}

V_{TEST}

Fastest, most stableDead-zone distortion

BIASING MODE TOPOLOGY SELECTION

Class-AB

- Only "weak zone"
- Always conducting

Highest accuracySlower

BIASING MODE TOPOLOGY SELECTION

- Class-B + AB
 - Class-B coarse charge
 - Class-AB fine settle

[Hershberg, VLSI 2013]

EMBEDDING LOCATION

TOPOLOGY SELECTION

- Directly before output stage
 - Precise control of output stage biasing
- Best for:
 - Class-AB operation
 - High accuracy & linearity
 - Low gain technologies
 - Nanoscale CMOS

[Hershberg, VLSI 2013]

[Lim, JSSC Oct. 2015]

EMBEDDING LOCATION

TOPOLOGY SELECTION

- Before second-to-last stage
 - Decouples stability from large signal biasing of output stage
- Best for:
 - Class-B operation
 - High speed
 - Coarse charging

[Hershberg, JSSC 2012]

TOPOLOGY CHOICES

CAPACITOR EMBEDDING

TOPOLOGY SELECTION

- Direct voltage-mode control
- Best for
 - Class-B biasing
 - High-voltage applications
- Limitations
 - If embedding in last stage, will reduce max slewing efficiency

[Hershberg, JSSC 2012]

RESISTOR EMBEDDING TOPOLOGY SELECTION

- Dynamically creates offset during stabilization
- Best for
 - PVT robust design
 - Nanoscale CMOS
 - Slewing efficiency
- Limitations
 - Speed problems if large V_{DZ} offset needs to be embedded

[Lim, JSSC Oct. 2015]

RESISTOR EMBEDDING TOPOLOGY SELECTION

RESISTOR EMBEDDING TOPOLOGY SELECTION

- Dynamically creates offset during stabilization
- Best for
 - PVT robust design
 - Nanoscale CMOS
 - Slewing efficiency

[Lim, JSSC Oct. 2015]

- Limitations
 - Speed problems if large V_{DZ} offset needs to be embedded

$$\Delta V_{DZ} = I_D * R_B \qquad \qquad \omega_p = 1/RC$$

$$\uparrow \qquad \uparrow \qquad \qquad \uparrow$$
Want a \rightarrow Needs \rightarrow Creates slow
big V? a big R stage 2 poles \otimes

CMOS RESISTOR EMBEDDING TOPOLOGY SELECTION

- Tunable on-state resistance
- Switchable (off-state)
- Best for
 - Power-cycling
 - Optimal biasing
 - Nanoscale CMOS
- Limitations
 - Less PVT robust than static resistor

[Lagos, JSSC Feb. 2019]

OTHER EMBEDDINGS

TOPOLOGY SELECTION

- Current starved inverters
- Best for
 - Dynamic control
 - Analog PVT tracking schemes
- Limitations
 - Slower (lowers 2nd stage output poles)

[Hershberg, PhD Thesis 2012] [Leuenberger, CICC 2017]

OTHER EMBEDDINGS

TOPOLOGY SELECTION

- Threshold voltage of output stage
- Best for
 - Low supply voltages
 - High speed
 - Simplicity
 - Area
- Limitations
 - PVT variation
 - Not with high supply voltages

[Lim, JSSC Oct. 2015]

PSEUDO DIFFERENTIAL

- Can be purely inverter-based, most dynamic
- Best for
 - Speed
- Limitations
 - Large input offset must be canceled
 - Limited accuracy

FULLY DIFFERENTIAL

- Fully-differential
- Best for
 - General purpose
 - Highest accuracy
- Limitations
 - Moderate speed /power penalty (front stage becomes slower)

THREE-STAGE

- The "workhorse"
- Best for
 - Most applications
- Limitations
 - Might not give enough gain in some technologies to support calibration-free operation
 - CMFB can be a little tricky in fully-differential topologies

FOUR-STAGE

- When more gain is needed
- Best for
 - High precision
 - Calibration-free
- Limitations
 - CMFB and latch-up require careful consideration
 - A little less speed (extra internal pole)

[Lim, VLSI 2017]

TWO-STAGE

- Special purpose
- Best for
 - Non-inverting feedback loop (e.g. CMFB)
 - Low precision applications
- Limitations
 - Low gain

[Lagos, JSSC Feb. 2019]

ONE STAGE? TOPOLOGY SELECTION

- "Inverter based amplifier"
- Best for
 - Specialty applications
- Limitations
 - Low gain
 - Low gain-bandwidth
 - Low slew rate / slew efficiency
 - No gain before output stage (no large-signal effects)
- A multi-stage ringamp is generally faster and more efficient.

CMFB

- Approach varies depending on topology
 - Psuedo-differential
 - Fully-differential
 - Level of CM rejection needed

CMFB

- Approach varies depending on topology
 - Psuedo-differential
 - Fully-differential
 - Level of CM rejection needed
- Passive CMFB
 - Simple
 - Often good enough

[Hershberg, JSSC 2012]

CMFB

- Approach varies depending on topology
 - Psuedo-differential
 - Fully-differential
 - Level of CM rejection needed
- Passive CMFB
 - Simple
 - Often good enough
- Active CMFB
 - Add gain
 - Higher accuracy
 - Larger rejection range

[Lagos, JSSC Feb. 2019]

CMFB

- Fully differential
 - Often requires global and local loops
- 3 paths
 - DC bias
 - Fast global feedback
 - Fast local feedback

[Hershberg, ISSCC 2019]

CMFB

- Fully differential
 - Often requires global and local loops
- 3 paths
 - DC bias
 - Fast global feedback
 - Fast local feedback

[Hershberg, ISSCC 2019]
CMFB

- Fully differential
 - Often requires global and local loops
- 3 paths
 - DC bias
 - Fast global feedback
 - Fast local feedback

[Hershberg, ISSCC 2019]

- Only operate when needed
 - Save power
- Best solution very architecture dependent

- Only operate when needed
 - Save power
- Best solution is very architecture dependent
- A naive solution: power gate + output switch
 - Extra switch in feedback path ☺
 - Undefined internal reset state 🔅
 - Signal dependent charge kickback ☺
 - Clock must drive all switches on EN line $\ensuremath{\mathfrak{S}}$
 - Headroom reduced by power gating switches ③

Only operate when needed INp

Best solution is very architecture dependent

TOPOLOGY SELECTION

POWER CYCLING

Save power

- A better solution: full-reset, self-disconnect
 - Extra parasitics from pullup/pulldown switches 😕
 - Clock must drive all switches on EN line 🔅
 - Headroom reduced by power gating switches 🔅

- Only operate when needed
 - Save power
- Best solution is very architecture dependent
- A better solution: full-reset, self-disconnect
 - Extra parasitics from pullup/pulldown switches ③
 - Clock must drive all switches on EN line $\ensuremath{\mathfrak{S}}$
 - Headroom reduced by power gating switches ③

- A very elegant solution: self-resetting
- Requires
 - Bias-enhancement (we'll get to this later)
 - CMOS resistors
- Best of all worlds
 - No power-gating switches
 - No pull-up or pull-down switches
 - Small switches (CMOS resistors) minimize clock loading

[Lagos, JSSC Mar. 2019]

- A very elegant solution: self-resetting
- Requires
 - Bias-enhancement (we'll get to this later)
 - CMOS resistors
- Best of all worlds
 - No power-gating switches
 - No pull-up or pull-down switches
 - Small switches (CMOS resistors) minimize clock loading

[Lagos, JSSC Mar. 2019]

AUTO-ZERO

- Not for free
 - Extra complexity
 - Sometimes extra power
- Some applications / topologies require it
 - Pseudo-differential ringamps
 - Zero-offset applications
- Most applications / topologies can avoid it
 - Offset tolerant and "good enough" use cases
 - System level methods

AUTO-ZERO

- Not for free
 - Extra complexity
 - Sometimes extra power
- Some applications / topologies require it
 - Pseudo-differential ringamps
 - Zero-offset applications
- Most applications / topologies can avoid it
 - Offset tolerant and "good enough" use cases
 - System level methods

"Good enough" partial cancellation:

- Inverter trip-point offset (tech. dependent V_{TH} mismatch)
- Stage 1 random offset (largest source of random offset)

AUTO-ZERO

- Not for free
 - Extra complexity
 - Sometimes extra power
- Some applications / topologies require it
 - Pseudo-differential ringamps
 - Zero-offset applications
- Most applications / topologies can avoid it
 - Offset tolerant and "good enough" use cases
 - System level methods

[Lim, Oct. 2015]

AUTO-ZERO

- Not for free
 - Extra complexity
 - Sometimes extra power
- Some applications / topologies require it
 - Pseudo-differential ringamps
 - Zero-offset applications
- Most applications / topologies can avoid it
 - Offset tolerant and "good enough" use cases
 - System level methods

AUTO-ZERO

- Not for free
 - Extra complexity
 - Sometimes extra power
- Some applications / topologies require it
 - Pseudo-differential ringamps
 - Zero-offset applications
- Most applications / topologies can avoid it
 - Offset tolerant and "good enough" use cases
 - System level methods

Differential topologies:

- No inverter trip-point offset 😳
- Only random mismatch offset

AUTO-ZERO

- Not for free
 - Extra complexity
 - Sometimes extra power
- Some applications / topologies require it
 - Pseudo-differential ringamps
 - Zero-offset applications
- Most applications / topologies can avoid it
 - Offset tolerant and "good enough" use cases
 - System level methods

Example: Pipelined SAR stage

Can often find simple methods to cancel ringamp offset somewhere else in the system

HIGH-VOLTAGE

- Capacitor embedding is best
 - Can store large ΔV needed to generate dead-zone
 - Can level shift between different VDDs
 - Can couple in multiple output paths (coarse/fine)

[ElShater, JSSC 2019]

(weak-zone only)

DEAD-ZONE DEGENERATION

LINEARITY ENHANCEMENT

[Lagos, JSSC Mar. 2019]

Motivation

- 1st order linear gain error often easy to calibrate (with digital or trimming)
- Higher order gain error much harder to correct
- Idea
 - Feedback to "warp" V_{DZ} as function of V_{OUT}
 - Especially useful in low-gain tech. like 28nm

EXTERNAL GAIN ENHANCEMENT TECHNIQUES LINEARITY ENHANCEMENT

- Class-AB style ringamps compatible with many "classical" gain enhancement techniques
- Ringamps using Correlated Level Shifting (CLS) techniques:
 - Split-CLS [Hershberg, JSSC 2012]
 - A-CLS [T.C. Hung, JSSC 2019]
 - WA-CLS [T.C. Hung, JSSC 2020]

 ϕ_{A1} : Before level shift

 ϕ_{A2} : After level shift

[T.C. Hung, JSSC 2020]

THE 2 COMMANDMENTS OF HIGH SPEED RINGAMP DESIGN

- 1. Thou shalt never load the internal nodes
- 2. Thou shalt never limit the internal currents

THE 2 COMMANDMENTS OF HIGH SPEED RINGAMP DESIGN

- But many choose to break the rules...
 - Trade speed for other benefits

Current limiter for peak g_m/I_D

[Lim, JSSC Oct. 2015]

BIAS-ENHANCEMENT

SPEED ENHANCEMENT

 Idea: use additional signal splitting to boost V_{OV} and g_m of internal stage

[Chen, TCASII 2017] [Lagos, JSSC Mar. 2019]

Clock Frequency (MHz)

PVT CONSIDERATIONS

FEEDBACK MAKES LIFE EASIER PVT CONSIDERATIONS

- Open-loop amplifier (e.g. Gm-C integrator)
 - Like balancing a ball on a hill
 - No feedback to suppress parameter variation
 - E.g. open-loop residue gain

- Ring amplifier
 - Like placing a ball safely away from the edge
 - Feedback suppresses parameter variation
 - But only as good as the feedback itself
 - Loop gain, bandwidth, stability

APPROACH 1: ROBUST-BY-DESIGN PVT CONSIDERATIONS

- Calibration-free approach
 - Include extra margin to pass all corners
 - Sacrifice some efficiency / speed

- Options for increasing phase margin
 - Move internal poles higher
 - More power
 - Move external pole lower
 - Less speed

APPROACH 1: ROBUST-BY-DESIGN

PVT CONSIDERATIONS

- Calibration-free approach
 - Include extra margin to pass all corners
 - Sacrifice some efficiency / speed

- Calibration-free ringamp ADCs
 - [Hung, ISSCC 2020]
 - 100MS/s, 71.7dB SNDR, 2.2fJ/c-step FoM_w
 - [Lim, JSSC Dec. 2015]
 - 50MS/s, 70.9dB SNDR, 6.9fJ/c-step FoM_w
 - [Lim, VLSI 2017]
 - 100MS/s, 73.2dB SNDR, 6.1fJ/c-step FoM_w

APPROACH 2: CALIBRATION

PVT CONSIDERATIONS

- Calibration-based approach
 - Use feedback to maintain optimal biasing
 - Top performance
 - More analog design freedom
 - More digital complexity $\overline{\ensuremath{\Im}}$
- Calibration-based ringamp ADCs
 - [Hershberg 2019]
 - 3.2GS/s, 61.7dB SNDR, 19.3fJ/c-step FoM_w
 - More to come...

active bias control

PRACTICAL DESIGN

TRANSIENT-BASED DESIGN & VALIDATION PRACTICAL DESIGN

- Transient-centric design is becoming mainstream
 - All "next-gen" amplifiers: ringamp, Gm-C, Gm-R, Charge-steering, Zero-crossing, etc.
- Modern compute power can handle it
 - Multi-core with APS

METHODS OF ANALYSIS PRACTICAL DESIGN

- Transient waveform visual inspection
 - Amplifier input nodes particularly useful
- Transient (+noise) FFT of sampled output
 - Exercise full output swing, need enough FFT points
- AC, PAC, PSS, PNOISE where useful
 - But always confirm with transient!

METHODS OF ANALYSIS PRACTICAL DESIGN

- Transient waveform visual inspection
 - Amplifier input nodes particularly useful
- Transient (+noise) FFT of sampled output
 - Exercise full output swing, need enough FFT points
- AC, PAC, PSS, PNOISE where useful
 - But always confirm with transient!

16NM DESIGN EXAMPLE

- Build in-situ testbench
 - Real switches
 - Actual feedback factor
 - Real output loading
 - Real timing control scheme
 - Estimated parasitics
 - Any other non-idealities

example environment: 1.5b flip-around MDAC

- Fully-differential
- CMOS-resistor
- Bias-enhanced
- Self-resetting
- Multi-path CMFB

- Fully-differential
- CMOS-resistor
- Bias-enhanced
- Self-resetting
- Multi-path CMFB

- Fully-differential
- CMOS-resistor
- Bias-enhanced
- Self-resetting
- Multi-path CMFB

- Fully-differential
- CMOS-resistor
- Bias-enhanced
- Self-resetting
- Multi-path CMFB

- Fully-differential
- CMOS-resistor
- Bias-enhanced
- Self-resetting
- Multi-path CMFB

ADJUST DRIVE STRENGTH

- Key parameter: output drive strength
 - Smaller: more stable, less internal loading
 - Larger: faster slew

ADJUST DRIVE STRENGTH

- Key parameter: output drive strength
 - Smaller: more stable, less internal loading
 - Larger: faster slew

ADJUST DRIVE STRENGTH

- Key parameter: internal stage sizes
 - Smaller: more efficient
 - Larger: faster

ADJUST DEADZONE

- Key parameter: dead-zone biasing
 - Smaller: faster settling
 - Larger: more stable

ADJUST DEADZONE

16NM DESIGN EXAMPLE

- Key parameter: dead-zone biasing
 - Smaller: faster settling
 - Larger: more stable

Dead-zone too large

ADJUST DEADZONE

16NM DESIGN EXAMPLE

- Key parameter: dead-zone biasing
 - Smaller: faster settling
 - Larger: more stable

Dead-zone too small

EXAMPLE DESIGN PROCEDURE PRACTICAL DESIGN

- 1. Build in-situ testbench with realistic timing & feedback conditions
- 2. Initialize ringamp with over-designed front stages (extra bandwidth)
- 3. Size output stage to balance worst-case slew rate / settling time (approx. 50/50)
- 4. Down-scale front stages for power efficiency (e.g. 4:2:1)
- 5. Iterate from #3 as necessary

Ultimately, the best design procedure depends on many factors, e.g. optimization priorities and application type. With practice will come intuition and insight. This is the art of analog design!

REVITALIZING THE ECOSYSTEM

REVITALIZING THE ECOSYSTEM

CONCLUSIONS

Ringamps remove the amplifier bottleneck...

more amplifierarchitectural intensive freedom techniques new applications

...and diversity is increasing

REVITALIZING THE ECOSYSTEM

CASE STUDY

[Hershberg, ISSCC 2019 (1)]

System	3.2 GS/s
Channel	800 MS/s
SNDR	63 dB
SFDR	80 dB
Power	61.3 mW
FoM _w	19 fJ/cs

- Order-of-magnitude improvement in direct-RF sampling ADC SoTA
- 36 ringamps in system
 - Very amplifier intensive

REVITALIZING THE ECOSYSTEM RINGAMP DESIGNS WITH MEASURED SILICON

REVITALIZING THE ECOSYSTEM CONCLUSIONS

But is it the scalable amplifier <u>you've</u> been waiting for?

Depends!

Ringamps are an exciting new tool.

It *could* be the right one for your task. Decide for yourself! ③

THANK YOU FOR YOUR ATTENTION!