High Performance ADCs for 5G

Benjamin Hershberg

imec, Leuven, Belgium

5G NR FR2: ADC REQUIREMENTS

5G NR FR2: 3GPP specs

- □ 5G Bandwidth Specs
 - Channel: 50MHz, 100MHz, 200MHz, 400MHz
 - Max. Aggregation: 800MHz
 - Widest Band: 3.25GHz (24.25GHz 27.50GHz)
 - Agg. 28GHz Bands: 5.25GHz (24.25GHz 29.50GHz)
- □ ...and need >1.5x more bandwidth to relax anti-alias filter.
- □ 5G Modulation Specs
 - QPSK, 16 QAM, 64 QAM, 256 QAM
 - Future: 1024 QAM

[3GPP, 2019]

5G NR FR2: ADC specs

- □ Translation into ADC specs depends heavily on system-level choices
 - Receiver chain SNR budget
 - % of standard supported
- □ Let's see what we can do across the large range of likely 5G ADC specs:
 - Resolution: 7 13 bits
 - Speed: 400 MS/s 12 GS/s
 - Linearity: 65 dB 85 dB SFDR

(needs to cover Mobile-Terminal, Base-Station, etc...)

5G NR FR2: ADC SoTA

Linearity SoTA

Linearity considerations

□ SFDR/THD specs can be harder than SNR specs!

- Noise power gets spread across large bandwidth
- Distortion power remains concentrated at specific frequencies

More considerations

- Beamforming requires many ADCs
 - Power efficiency
 - Area efficiency

An industrial solution today:

- 500mW 4GS/s ADC in 0.5mm² x 128 element digital beam-forming
- **= 64 Watts** $= 64 \text{ mm}^2$
- $(\mathbf{\dot{e}})$

Reconfigurability

Large variation in required performance depending on mode (e.g. 50MHz vs. 800MHz BW)

	Industry Sola				
	Vaz ISSCC 2017	Devarajan ISSCC 2017	Straayer ISSCC 2016	Wu ISSCC 2016	Ali VLSI 2016
Architecture	Pipe-SAR	Pipeline	Pipeline	Pipeline	Pipeline
Sampling rate [Gsps]	4	10	4	4	5
Technology [nm]	16	28	65	16	28
ENOB Nyquist [bit]	9.2	8.8	8.9	9.0	9.3
SFDR Nyquist [dB]	67.0	64	64.0	68.0	70
Power [mW]	513	2900	2214	300	2300
FoM _{Walden} [fJ/c.step]	214	631	1130	145	709
FoM _{Schreier} [dB]	153	147	145	154	148
Area [mm ²]	1.04	20.2	11.0	0.34	14.4

The duration (C a TA

Benjamin Hershberg

Case Study: MIMO Transceiver

- □ [Jann ISSCC 2019]
 - First fully-integrated 5G TRX
- Modest ADC specs
 - 400 MS/s
 - 7.7 ENOB
 - ...but ADC is still biggest slice of RX power!

Conclusions: 5G NR FR2 requirements

GETTING TO GIGA-SAMPLE SPEEDS

Giga-samples: how do we get there?

- Two possible strategies:
 - 1. Fast single-channel
 - Practical technology speed limits
 - 8 Many clocking overheads don't scale w/ clock
 - 8 Limited architecture choices

Giga-samples: how do we get there?

- Two possible strategies:
 - 1. Fast single-channel
 - Practical technology speed limits
 - 8 Many clocking overheads don't scale w/ clock
 - 8 Limited architecture choices
 - 2. Interleave several slower channels
 - 8 Interleave errors (spurs)
 - 😑 Easy to correct: Offset, Gain
 - 8 Hard to correct: Skew, Bandwidth
 - 8 Larger input load to drive
 - 😕 Larger area

V_{IN}

Giga-samples: how do we get there?

- □ Combine both strategies
 - First: maximize channel speed
 - Then: interleave as necessary

Core mission statement:

Maximize per-channel speed!

Pipelining

Pipelining

- Appears in all medium/high resolution giga-sample ADCs
- Break task into smaller pieces
- Pass incomplete result along for more processing
- Minimize # of operations in critical timing path
 - Sample
 - Quantize
 - Amplify

Example 3b/stage Pipelined ADC

- 2b/stage of quantization
- 1b/stage of redundancy (error correction)

Case study: Deep Pipeline

[Wu, ISSCC 2016]

- □ 1.5b/stage Flash ADC Quantizer
 - ③ Fast! Minimum set of actions per stage
 - 8 Many stages / residue amplifiers

Case study: Pipelined SAR

[Vaz, ISSCC 2017]

System	4 GS/s
Channel	500 MS/s
SNDR	57 dB
SFDR	67 dB
Power	513 mW
FoM_W	214 fJ/cs

- □ SAR as a sub-ADC
 - Sewer stages / amplifiers
 - Over efficient sub-ADC
 - 8 Slower channel speed

Case study: Hybrid Pipeline

[Brandolini, JSSC 2015]

System	5 GS/s
Channel	2.5 GS/s
SNDR	52 dB
SFDR	58 dB
Power	150 mW
FoM_W	96 fJ/cs

- □ Fast frontend, slower backend
 - ③ Fast frontend minimizes interleave factor
 - ③ Interleaved SARs improve backend efficiency
 - Frontend amplifiers still power-hungry

AMPLIFICATION: THE HIDDEN BOTTLENECK

Amplification

- Pipelining requires passing along analog residues
- □ To go high speed, you need good amplifiers!

Case study: Industry Gigasample ADCs

- Class-A opamps in nanoscale CMOS
 - 8 Not enough voltage headroom
 - 8 Poor efficiency / technology scaling
- Requires a special high-voltage supply
 8 Eliminates *all hope* of high efficiency
- But lacking better options, this is still what many in industry use...

Case study: Industry Gigasample ADCs

[Wu, VLSI 2013]		
Fs	5.4 GS/s	
SNDR	52 dB	
Power	500 mW	
[Wu, ISS	SCC 2016]	
Fs	4 GS/s	
SNDR	56 dB	
Power	300 mW	
[Brandolini, JSSC 2015]		
Fs	5 GS/s	
SNDR	52 dB	
Power	150 mW	

- All 3 ADCs use the same residue amplifier on 1.8V
- Core circuits on 1.4V/0.4V

Case study: Industry Gigasample ADCs

Amplification: The Hidden Bottleneck

Conclusions: Amplifier Bottleneck

- □ Class-A opamps will *never* be good in scaled CMOS
 - Severely constrains ADC design freedoms
 - 2010's were the era of the (amplifier-less) SAR ADC

□ A new approach is needed!

EMERGING AMPLIFICATION SOLUTIONS

Emerging Amplification Solutions

- Open loop
 - Gm-C integrator
 - \bigstar Gm-R amplifier
 - Charge-pump based
- Feedback
 - Ring amplifier
 - Zero-crossing based circuit
 - Charge-steering amplifier
 - Digital amplifier

Found in state-of-the-art Gigasample ADCs

Amplifier Wishlist

Gm-C integrator

- Basic idea: Integrate current
 G_mV_{RES} onto load capacitor
 - Sast (open-loop)
 - Sully dynamic (switchable)
 - Inherent filtering (sinc)
 - ③ Good efficiency
 - 8 Poor linearity
 - 8 Small input swing
 - 8 Small output swing
 - 8 Sensitive to jitter
 - 8 Sensitive to PVT

Case Study: Gm-C Integrator

[Vaz, ISSCC 2017]

System	4 GS/s
Channel	500 MS/s
SNDR	57 dB
SFDR	67 dB
Power	513 mW
FoM_W	214 fJ/cs

Gm-R amplifier

- Basic idea: RC settle voltage G_mV_{RES}R_L across load capacitor
 - Seven faster! (no pre-clearing)
 - Sully dynamic (switchable)
 - Good efficiency
 - Moderate PVT sensitivity
 - Poor linearity
 - 8 Small input swing
 - 8 Small output swing

Case study: Gm-R Amplifier

[Jiang, ISSCC 2019]

System	1 GS/s
Channel	1 GS/s
SNDR	60 dB
SFDR	75 dB
Power	8 mW
FoMw	9 fJ/cs

Current SoTA for single-channel gigasample ADCs

- Basic idea: Start in a high efficiency but unstable state and then dynamically stabilize with large-signal feedback
 [Hershberg, JSSC 2012]
 - High efficiency
 - High speed
 - ③ Wide output swing
 - Second Excellent linearity
 - © Scales with digital
 - Sully dynamic (switchable)
 - Moderate PVT sensitivity

- Transient, large signal paradigm
- □ The AC view
 - Make p1 & p2 as fast as possible

- Transient, large signal paradigm
- □ The AC view
 - Make p1 & p2 as fast as possible
 - Dynamically reduce p3

- Transient, large signal paradigm
- □ The AC view
 - Make p1 & p2 as fast as possible
 - Dynamically reduce p3
 - ring oscillator \rightarrow ring amplifier

- Transient, large signal paradigm
- □ The DC / transient view
 - V_{ov} initially maximum
 - □ Slew-rate at theoretical max. ☺

- Transient, large signal paradigm
- □ The DC / transient view
 - V_{ov} initially maximum
 - □ Slew-rate at theoretical max. ☺
 - V_{ov} dynamically reduced to adjust P3
 - □ Reduces $V_{DSAT} \rightarrow swing/linearity \bigcirc$
 - □ Increases $r_o \rightarrow gain/linearity \odot$
 - □ Reduces $g_m \rightarrow$ noise filtering \odot

Case study: Ring Amplifier

[Hershberg, ISSCC 2019 (1)]

System	3.2 GS/s
Channel	800 MS/s
SNDR	63 dB
SFDR	80 dB
Power	61.3 mW
FoM _w	19 fJ/cs

- Order-of-magnitude improvement in SoTA
- 36 ringamps in systemBottleneck solved?

Ringamp Robustness Techniques

- Option 1: Design with extra margin
 - Calibration free
 - Requires some sacrifice in speed
- □ Still can achieve SoTA performance
 - 3 stage ringamp [Lim, JSSC 2015 (2)]
 - 4 stage ringamp [Lim, VLSI 2017]

[Lim, JSSC 2015]

Ringamp Robustness Techniques

- Option 2: Use background tracking or calibration techniques
 - Optimum performance
 - Extra analog/digital complexity

Conclusion: Emerging Amplification

- Open-loop where it makes sense
 - E.g. for *very* fast amplification

- Ringamps for everything else
 - Any input swing, any output swing
 - Any resolution, any speed
 - All circuits: ADC, VGA, Filter, PLL, etc.

DESIGNING FOR RECONFIGURABILITY

5G NR FR2 specs revisited

Wide range of channel bandwidths and modulations:

□ 5G Bandwidth Specs

- Channel: 50MHz, 100MHz, 200MHz, 400MHz
 Max. Aggregation: 800MHz
 Widest Band: 3.25GHz (24.25GHz 27.50GHz)
 Agg. 28GHz Bands: 5.25GHz (24.25GHz 29.50GHz)
- □ 5G Modulation Specs
 - QPSK, 16 QAM, 64 QAM, 256 QAM
 - Future: 1024 QAM

→ A reconfigurable multi-standard ADC is a clear advantage

ADC Reconfigurability

Speed Reconfigurability

- Motivation: constant power efficiency
- □ 2 ingredients required
 - Event-driven control (clocking)
 - Fully-dynamic power consumption
- □ Fully-dynamic = no static power
- □ "Next-gen" amplifiers support this
 - Gm-C
 - Gm-R
 - Ringamp

Ringamp with power-gating function

[Lagos, JSSC 2019]

- Conventional: Synchronous 2-phase nonoverlapping clock tree
 - Simple & effective at lower speeds
 - But many hidden drawbacks at high speed
- With improvements in amplification tech., clocking becomes the new bottleneck

Ρ

Ρ

Phase 1		
hase 1 delayed		1
Phase 2		
hase 2 delayed		
	ma	aster clock
		Ţ

- Local "Stage Control Units" connected by inter-stage control busses
 - Communication
 - Driving local circuits
 - ③ Correct-by-construction
 - ③ Minimal global routing
 - Interleaving advantages
 - Session States Less sampling jitter
 - ③ Faster (less timing overhead)

[Hershberg, ISSCC 2019 (2)]

- Internal "chain-reaction" of processing is independent of external clock rate
 - 1MS/s same as 1GS/s
 - © Enables fully-dynamic operation
 - O Auto maximizes track time
 - ③ Removes many leakage issues

Conventional

Event-driven

- Omega More efficient (less power)
- Reconfigurable behavior
- O No limit to # of clocks/phases
- Must be careful about deadlocks
- Validation effort increased

[Hershberg, ISSCC 2019 (2)]

Fully Dynamic Reference Regulation

** Sneak Peek! **

- □ General-purpose solution
 - Discrete-time comparator-based[Kull, JSSC 2013]
 - Can sub-divide into dirty/clean replicas for low-noise and highaccuracy

Discrete-time regulation circuit:

- Output Low power
- General purpose
- Still requires some decap area

Deep pipeline with dirty/clean reference replicas:

Architecture Reconfigurability

- Design-time circuit re-use
 - Faster time-to-market
 - Less manpower
- Simple, low resolution stages
 - Use "cheap" high performance amplifiers
 - Can simply "chain" together using asynchronous, eventdriven control protocols

SUMMARY & CONCLUSION

Final Summary

For best performance at high speeds:

First maximize the per-channel speed...

...then interleave as necessary

Final Summary

Final Summary

Closing the Gap

Industry SoTA

	Vaz ISSCC 2017	Devarajan ISSCC 2017	Straayer ISSCC 2016	Wu ISSCC 2016	Ali VLSI 2016
Architecture	Pipe-SAR	Pipeline	Pipeline	Pipeline	Pipeline
Sampling rate [Gsps]	4	10	4	4	5
Technology [nm]	16	28	65	16	28
ENOB Nyquist [bit]	9.2	8.8	8.9	9.0	9.3
SFDR Nyquist [dB]	67.0	64	64.0	68.0	70
Power [mW]	513	2900	2214	300	2300
FoM _{Walden} [fJ/c.step]	214	631	1130	145	709
FoM _{Schreier} [dB]	153	147	145	154	148
Area [mm ²]	1.04	20.2	11.0	0.34	14.4

R&D SoTA

Coming soon, to a product near you...

References (1)

3GPP, 2019	3GPP, "5G NR release 15", 2019. [Online]. Available: https://www.3gpp.org/release-15
Ali, JSSC 2014	A. M. A. Ali et al., "A 14 Bit 1 GS/s RF Sampling Pipelined ADC With Background Calibration," in IEEE Journal of Solid-State Circuits, vol. 49, no. 12, pp. 2857-2867, Dec. 2014.
Brandolini, JSSC 2015	M. Brandolini et al., "A 5 GS/s 150 mW 10 b SHA-Less Pipelined/SAR Hybrid ADC for Direct-Sampling Systems in 28 nm CMOS," in IEEE Journal of Solid-State Circuits, vol. 50, no. 12, pp. 2922-2934, Dec. 2015.
Hershberg, ISSCC 2019 (1)	B. Hershberg et al., "3.1 A 3.2GS/s 10 ENOB 61mW Ringamp ADC in 16nm with Background Monitoring of Distortion," 2019 IEEE International Solid- State Circuits Conference - (ISSCC), San Francisco, CA, USA, 2019, pp. 58-60.
Hershberg, ISSCC 2019 (2)	B. Hershberg et al., "3.6 A 6-to-600MS/s Fully Dynamic Ringamp Pipelined ADC with Asynchronous Event-Driven Clocking in 16nm," 2019 IEEE International Solid- State Circuits Conference - (ISSCC), San Francisco, CA, USA, 2019, pp. 68-70.
Hershberg, JSSC 2012	B. Hershberg, S. Weaver, K. Sobue, S. Takeuchi, K. Hamashita and U. Moon, "Ring Amplifiers for Switched Capacitor Circuits," in IEEE Journal of Solid-State Circuits, vol. 47, no. 12, pp. 2928-2942, Dec. 2012.
Jann, ISSCC 2019	B. Jann et al., "21.5 A 5G Sub-6GHz Zero-IF and mm-Wave IF Transceiver with MIMO and Carrier Aggregation," 2019 IEEE International Solid- State Circuits Conference - (ISSCC), San Francisco, CA, USA, 2019, pp. 352-354.
Jiang, ISSCC 2019	W. Jiang, Y. Zhu, M. Zhang, C. Chan and R. P. Martins, "3.2 A 7.6mW 1GS/s 60dB SNDR Single-Channel SAR- Assisted Pipelined ADC with Temperature-Compensated Dynamic Gm-R-Based Amplifier," 2019 IEEE International Solid- State Circuits Conference - (ISSCC), San Francisco, CA,
Kull, JSSC 2013	L. Kull et al., "A 3.1 mW 8b 1.2 GS/s Single-Channel Asynchronous SAR ADC With Alternate Comparators for Enhanced Speed in 32 nm Digital SOI CMOS," in IEEE Journal of Solid-State Circuits, vol. 48, no. 12, pp. 3049-3058, Dec. 2013.

References (2)

Lagos, CICC 2018	J. Lagos, B. Hershberg, E. Martens, P. Wambacq and J. Craninckx, "A 1Gsps, 12-bit, single-channel pipelined ADC with dead-zone-degenerated ring amplifiers," 2018 IEEE Custom Integrated Circuits Conference (CICC), San Diego, CA, 2018, pp. 1-4.
Lagos, JSSC 2019	J. Lagos, B. P. Hershberg, E. Martens, P. Wambacq and J. Craninckx, "A 1-GS/s, 12-b, Single-Channel Pipelined ADC With Dead-Zone-Degenerated Ring Amplifiers," in IEEE Journal of Solid-State Circuits, vol. 54, no. 3, pp. 646- 658, March 2019.
Lim, JSSC 2015 (1)	Y. Lim and M. P. Flynn, "A 100 MS/s, 10.5 Bit, 2.46 mW Comparator-Less Pipeline ADC Using Self-Biased Ring Amplifiers," in IEEE Journal of Solid-State Circuits, vol. 50, no. 10, pp. 2331-2341, Oct. 2015.
Lim, JSSC 2015 (2)	Y. Lim and M. P. Flynn, "A 1 mW 71.5 dB SNDR 50 MS/s 13 bit Fully Differential Ring Amplifier Based SAR-Assisted Pipeline ADC," in IEEE Journal of Solid-State Circuits, vol. 50, no. 12, pp. 2901-2911, Dec. 2015.
Lim, VLSI 2017	Y. Lim and M. P. Flynn, "A calibration-free 2.3 mW 73.2 dB SNDR 15b 100 MS/s four-stage fully differential ring amplifier based SAR-assisted pipeline ADC," 2017 Symposium on VLSI Circuits, Kyoto, 2017, pp. C98-C99.
Murmann, 2019	B. Murmann, "ADC Performance Survey 1997-2019," [Online]. Available: http://web.stanford.edu/~murmann/adcsurvey.html.
Vaz, ISSCC 2017	B. Vaz et al., "16.1 A 13b 4GS/s digitally assisted dynamic 3-stage asynchronous pipelined-SAR ADC," 2017 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, 2017, pp. 276-277.
Wu, ISSCC 2016	J. Wu et al., "A 4GS/s 13b pipelined ADC with capacitor and amplifier sharing in 16nm CMOS," 2016 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, 2016, pp. 466-467.
Wu, VLSI 2013	J. Wu et al., "A 5.4GS/s 12b 500mW pipeline ADC in 28nm CMOS," 2013 Symposium on VLSI Circuits, Kyoto, 2013, pp. C92-C93.