

A 1MS/s to 1GS/s Ringamp-Based Pipelined ADC with Fully Dynamic Reference Regulation and Stochastic Scope-on-Chip Background Monitoring in 16nm

<u>Benjamin Hershberg</u>, Nereo Markulic, Jorge Lagos, Ewout Martens, Davide Dermit, Jan Craninckx

imec, Leuven, Belgium

Architecture Overview

- Ringamp "deep" pipeline based on: [Hershberg, ISSCC 2019, Paper 3.6] [Hershberg, ISSCC 2019, Paper 3.1]
 - Fully Dynamic Power Consumption
 - Asynchronous event-driven timing control
 - MDAC with passive-hold mode in STG1
 - Early quantization in STG2-9

- New in this work:
 - Reference Regulation
 - Stochastic Scope-on-Chip
 - Ringamp Topology

Outline

- Ringamp Topology
- Fully Dynamic Reference Regulation
- Scope-on-Chip Amplifier Settling Monitor
- Performance Summary & Conclusion

- What is a ringamp?
 - Multi-stage amplifier
 - Dominant output pole
 - Dynamic stabilization
- High efficiency
- High linearity
- High speed
- Wide output swing
- Sully dynamic (switchable)
- Scales with Digital

[Hershberg, JSSC 2012]

- Fully-Differential
- Multi-Path CMFB
- Trapped-Charge Biasing
- CMOS-Resistor
- Bias-Enhanced
- Self-Resetting
- Slew-Done Detector

- Fully-Differential
- Multi-Path CMFB
- Trapped-Charge Biasing
- CMOS-Resistor
- Bias-Enhanced
- Self-Resetting
- Slew-Done Detector

[Lim, JSSC Dec. 2015]

- Fully-Differential
- Multi-Path CMFB
- Trapped-Charge Biasing
- CMOS-Resistor
- Bias-Enhanced
- Self-Resetting

CD1.1

• Slew-Done Detector

[Lim, JSSC Dec. 2015] [Hershberg, ISSCC 2019] (Paper 3.1)

- Fully-Differential
- Multi-Path CMFB
- Trapped-Charge Biasing
- CMOS-Resistor
- Bias-Enhanced
- Self-Resetting

CD1.1

• Slew-Done Detector

[Hershberg, ISSCC 2019] (Paper 3.1)

- Fully-Differential
- Multi-Path CMFB
- Trapped-Charge Biasing
- CMOS-Resistor
- Bias-Enhanced
- Self-Resetting

CD1.1

• Slew-Done Detector

[Lagos, JSSC Feb. 2019]

- Fully-Differential
- Multi-Path CMFB
- Trapped-Charge Biasing
- CMOS-Resistor
- Bias-Enhanced
- Self-Resetting

CD1.1

• Slew-Done Detector

[Chen, TCASII 2018] [Lagos, JSSC Mar. 2019]

- Fully-Differential
- Multi-Path CMFB
- Trapped-Charge Biasing
- CMOS-Resistor
- Bias-Enhanced
- Self-Resetting

CD1.1

• Slew-Done Detector

[Lagos, JSSC Mar. 2019]

- Fully-Differential
- Multi-Path CMFB
- Trapped-Charge Biasing
- CMOS-Resistor
- Bias-Enhanced
- Self-Resetting

CD1.1

• Slew-Done Detector

[Lagos, JSSC Mar. 2019]

- Fully-Differential
- Multi-Path CMFB
- Trapped-Charge Biasing
- CMOS-Resistor
- Bias-Enhanced
- Self-Resetting
- Slew-Done Detector

[Hershberg, ISSCC 2019] (Paper 3.6)

- Fully-Differential
- Multi-Path CMFB
- Trapped-Charge Biasing
- CMOS-Resistor
- Bias-Enhanced
- Self-Resetting
- Slew-Done Detector

[Hershberg, ISSCC 2019] (Paper 3.6)

Not Mandatory Using a fixed timedelay to generate *slew done* also ok.

CD1.1

Outline

- Ringamp Topology
- Fully Dynamic Reference Regulation
- Scope-on-Chip Amplifier Settling Monitor
- Performance Summary & Conclusion

Fully Dynamic Reference Regulation

- Goal: fully dynamic power for complete system (core + reference)
 - Constant FoM for any clock rate
 - Enables reconfigurable, multi-standard ADCs
- ADC core fully dynamic by design \checkmark
 - Enabler: Asynchronous timing control
 - Enabler: Ring amplifier with fast on/off switching
- Reference Regulation
 - How can we make this fully dynamic too?

[Hershberg, ISSCC 2019, Paper 3.6]

Fully Dynamic Reference Regulation

- Discrete Time Regulator Loop
 - Comparator monitors replica level
 - Feeds back "charge packet" (C_P) update into charge reservoir (C_R)

[Kull, JSSC 2013]

Fully Dynamic Reference Regulation

- Discrete Time Regulator Loop
 - Comparator monitors replica level
 - Feeds back "charge packet" (C_P) update into charge reservoir (C_R)
- Limitations
 - Must source all charge for an ADC conversion in a single charge packet
 - Reference ripple error a problem
 - Acceptable for ADCs < 8 bit</p>
 - $-C_R$ too large for ADCs > 8 bit (> 1nF)

[Kull, JSSC 2013]

- Key observation: V_{RFF} accuracy & current requirements are decoupled w.r.t. time
 - Initial: large current, low accuracy
 - Final: small current, high accuracy

Example Settling Waveform

OUTp OUTm

slew done

Хp Xm

900

- **Key observation:** V_{REF} accuracy & current requirements are decoupled w.r.t. time
 - Initial: large current (98%), low accuracy
 - Final: small current (2%), high accuracy

Example Settling Waveform

OUTp OUTm

slew done

Xp Xm

900

- **Key observation:** V_{REF} accuracy & current requirements are decoupled w.r.t. time
 - Initial: large current (98%), low accuracy
 - Final: small current (2%), high accuracy

Example Settling Waveform

OUTp OUTm

slew done

Xp Xm

900

CD1.1

2020 Symposia on VLSI Technology and Circuits

- **Key observation:** V_{REF} accuracy & current requirements are decoupled w.r.t. time
 - Initial: large current (98%), low accuracy
 - Final: small current (2%), high accuracy

True for many applications

- Residue Amplifiers (Slew->Settle)
- SAR DACs (MSB->LSB)

- Solution: Use 2 copies of V_{REF}
 - V_{REF} dirty: low-impedance, low-accuracy
 - V_{REF} clean: high-impedance, high-accuracy
- Relaxes requirements of both copies

Example Settling Waveform

CD1.1

2020 Symposia on VLSI Technology and Circuits

Switching from Dirty to Clean Reference

CD1.1

2020 Symposia on VLSI Technology and Circuits

Switching from Dirty to Clean Reference

- Need break-before-make
 - Must isolate clean from dirty
- Want fast & clean crossover
 - Amplifier feedback is "paused", time lost
 - Any injected errors must be re-settled

Example Settling Waveform

OUTp OUTm

slew done

Хp Xm

900

2020 Symposia on VLSI Technology and Circuits

0.6

0.4

Sub-DAC Design Details

- Optimized control logic
 - Non-overlap
 - Fast crossover (< 30ps)
 - No corruption of *REF_clean*
- Dummy switches to cancel clock feedthrough & charge injection
- Minimal impact on settling performance

CD1.1

Sub-DAC Design Details

- Optimized control logic
 - Non-overlap
 - Fast crossover (< 30ps)</p>
 - No corruption of *REF_clean*
- Dummy switches to cancel clock feedthrough & charge injection
- Minimal impact on settling performance

CD1.1

Sub-DAC Design Details

- Optimized control logic
 - Non-overlap
 - Fast crossover (< 30ps)
 - No corruption of *REF_clean*
- Dummy switches to cancel clock feedthrough & charge injection
- Minimal impact on settling performance

CD1.1

Reference Generation

- Single set of regulated references shared by all stages
 - Regulators only update once per cycle

- Standard Pipeline
 - VREFP
 - VCM
 - VREFM
- Here: 5 discrete-time loops
 - VREFP dirty
 - VREFP clean
 - VCM
 - VREFM dirty
 - VREFM clean

• C_P / C_M sizing

- Determined by max current pulled by load
- C_R sizing
 - Determined by reference ripple amplitude requirements (accuracy / noise)

- C_P / C_M sizing
 - Determined by max current pulled by load

• C_R sizing

 Determined by reference ripple amplitude requirements (accuracy / noise)

- Dirty REF accuracy limited by reference ripple
 - Function of C_P/C_M vs. C_R
- Clean REF accuracy limited by comparator noise
 - Over-designed for low-noise
 - Can decimate to save power (only operate once every N cycles)

- Dirty REF accuracy limited by reference ripple
 - Function of C_P/C_M vs. C_R
- Clean REF accuracy limited by comparator noise
 - Over-designed for low-noise
 - Can decimate to save power (only operate once every N cycles)

Regulator Design Values

- All capacitors made tunable for testing purposes
- Regulator area can be significantly reduced
 - Many non-essential test features

Nominal Capacitor Values

	CP	CM	CR
VCM	130 fF	130 fF	45 pF
VREFP_dirty	4pF	-	45 pF
VREFM_dirty	-	2 pF	45 pF
VREFP_clean	320 fF	24 fF	120 pF
/REFM_clean	20 fF	320 fF	120 pF

Outline

- Ringamp Topology
- Fully Dynamic Reference Regulation
- Scope-on-Chip Amplifier Settling Monitor
- Performance Summary & Conclusion

2 Approaches to Ringamp Robustness

- Robust by design
 - No calibration, but needs design margin
 - Several SoTA designs using this:

[Hung, ISSCC 2020] 100MS/s, 71.7dB SNDR, 2.2fJ/c-step FoM_W [Lim, JSSC Dec. 2015] 50MS/s, 70.9dB SNDR, 6.9fJ/c-step FoM_W [Lim, VLSI 2017] 100MS/s, 73.2dB SNDR, 6.1fJ/c-step FoM_W

- Robust by background tuning / calibration / digital assistance
 - Max performance, but possibly more complex
 - Less has been tried here interesting research questions!
 [Hershberg, ISSCC 2019, Paper 3.1]

Ringamp Waveform Capture

• Main goals:

- 1. Background capture of amplifier settling waveform
- 2. Use this information to optimize ringamp biasing / performance

CD1.1

2020 Symposia on VLSI Technology and Circuits

CD1.1

2020 Symposia on VLSI Technology and Circuits

CD1.1

2020 Symposia on VLSI Technology and Circuits

CD1.1

2020 Symposia on VLSI Technology and Circuits

Challenge 3: Low complexity

CD1.1

2020 Symposia on VLSI Technology and Circuits

CD1.1

2020 Symposia on VLSI Technology and Circuits

CD1.1

2020 Symposia on VLSI Technology and Circuits

2020 Symposia on VLSI Technology and Circuits

CD1.1

Challenge 3: Low complexity

V_{IN} + 1,1,0,1,0,0,1,... avg D(V_{IN})

Solution: 1-bit stochastic ADC

CD1.1

- Monitor circuit added to output of each stage
- Single-ended scheme here
 - Dummy sampler also on OUTp
 - Fully differential also possible

CD1.1

2020 Symposia on VLSI Technology and Circuits

2020 Symposia on VLSI Technology and Circuits

CD1.1

2020 Symposia on VLSI Technology and Circuits

Measured Amplifier Settling Waveforms

- Provides direct insight into amplifier settling behavior!
 - Verification
 - Debug
 - Calibration?...

Ringamp Waveform Capture

• Main goals:

- 1. Background capture of amplifier settling waveform \checkmark
- 2. Use this information to optimize ringamp biasing / performance

Defining an Objective Function for Bias Control

- Observation: only the Critically Damped case has:
 - Initial large amplitude
 - Final small amplitude
- Estimator = P₂ / P₁
- Other variations of this concept also work

Defining an Objective Function for Bias Control

- Estimator = P_2 / P_1
- Accurately predicts the bias optimum (within certain margin)
- PVT tracking loop possible
 - But not implemented

Background operation of Ringamp Monitor

- Monitor circuit samples during normal operation
 - Disturbs residue slightly

- Minimal performance impact \checkmark
 - SNDR: no loss
 - THD: no loss
 - SFDR: -3dB worst-case

Outline

- Ringamp Topology
- Fully Dynamic Reference Regulation
- Scope-on-Chip Amplifier Settling Monitor
- Performance Summary & Conclusion

Measurement Results

- 16nm CMOS FinFET
- 0.095 mm²

CD1.1

ADC Output Spectrum with Regulation

Frequency Sweeps

2020 Symposia on VLSI Technology and Circuits

Regulator Performance

- Regulator only 8% of total ADC power
 - Majority of power delivered to load
 - High efficiency
- Decimation of clean regulators improves efficiency
- Minimal impact on noise & SNDR

Performance Summary

- 1GS/s single channel 9.6 ENOB
- Full dynamic reference regulation
- FoM_w 14fJ/c-step from 1MS/s 1GS/s

Technology	16nm CMOS	
Supply	0.9 V	
Sampling Rate	1MS/s - 1 GS/s	
Resolution	11b	
Input Range	1.6 V pk-pk diff.	
Performance at 1GS/s:	100 MHz input:	500 MHz input:
ENOB	9.7 b	9.6 b
SNDR	59.8 dB	59.5 dB
SFDR	78.6 dB	75.9 dB
THD	71.8 dB	69.9 dB
Total Power	10.9 mW	
ADC	10.0 mW (92%)	
Regulator	0.9 mW (8%)	
Walden FoM	14.1 fJ/c-step	
Schreier FoM	166.1 dB	
Active Area	0.095 mm ²	

Contributions & Conclusions

- High-Speed Ringamp Topology
 - Elegant operation
- Fully-Dynamic Discrete-Time Reference Regulation
 - Many applications (pipeline, SAR, ...)
 - Any accuracy / noise requirement
- Stochastic ADC "Scope-on-Chip"
 - Small, simple, high resolution, background operation
 - Other interesting applications: e.g. supply and reference diagnostics

Thank you for your attention!

CD1.1

2020 Symposia on VLSI Technology and Circuits